

Study and Characterization of Nano-structured Electron Sources for Accelerator Applications

Alimohammed Samina Hussain Kachwala Advisor: Prof. Siddharth Karkare Arizona State University

- Introduction
- Photoemission Electron Microscope (PEEM): A Tool to Characterize Photocathodes
- (N)UNCD Photocathode
- Cs₃Sb Photocathodes
- Plasmonic Spiral
- Conclusion and Future Work

Introduction

Reviews of Modern Physics 88.1 (2016): 015007.

New Journal of Physics 17.6 (2015): 063004.

Physical Review Special Topics-Accelerators and Beams 17.12 (2014): 120701.

9/25/2024

Reviews of Modern Physics 88.1 (2016): 015007.

9/25/2024

Physical Review Special Topics-Accelerators and Beams 17.12 (2014): 120701.

9/25/2024

Introduction

UED

New Journal of Physics 17.6 (2015): 063004.

https://www.classe.cornell.edu/

9/25/2024

Temporal Structure of Electron Beam

- Continuous Electron Beam
- Steady State Microscopy Applications

Field Emission Tips (~nm scale emission area)

No Temporal Structure

Pulse Goal: Increase Brightness of Pulsed Electron Beam

Stroboscopic UED/M \sim X-ray Sources, Colliders, Single Shot UED/M etc. \sim Sources, Colliders, Single Shot UED/M etc. \sim X-ray Sources, Source

9/25/2024

Electron Beam

What is an electron beam? Bunch of electrons travelling in similar direction

Momenta Satisfy Relation $p_z >> p_x$, p_y

Longitudinal Directions (z)

What is Bright electron beam?

Low Brightness

High Brightness

Beam Direction

Transverse Directions (x,y)

Beam Brightness

Beam Brightness = Charge density in Phase space

$$\mathbf{B} = \frac{I}{\varepsilon_{nx}\varepsilon_{ny}}$$

According to Liouville's theorem, Brightness remains invariant for Hamiltonian systems

Photocathode determines the maximum possible brightness

9/25/2024

Photocathode Parameters

Quantum Efficiency

Dowell-Schmerge (DS) model

- Free Electron Gas Theory
- Spicer's Three Step Model

Response Time

Response time of a photocathode is given in terms of the extracted electron bunch length when compared to the incoming laser pulse.

MTE dependance:

- Photocathode Parameters
 - Material & Temperature
 - Surface Morphology
- Laser Parameter
 - Photon Energy ($\hbar\omega$)
 - o Fluence

9/25/2024

Photocathode Brightness

• Pulsed Electron Beam

≻X-ray Sources, Colliders, Single Shot UED/M etc.

MTE

 mc^2

Pulsed Electron Beam

 $\text{MTE} = \frac{1}{2}m\langle v_x^2 \rangle + \frac{1}{2}m\langle v_y^2 \rangle$

Stroboscopic UED/M

Few μ m limited by the diffraction limit of light

Measuring Photocathode Parameters

9/25/2024

PEEM: Characterize Photocathodes

Real Space: Measure σ_x and I

9/25/2024

PEEM: Characterize Photocathodes

9/25/2024

Research Work: Various Photocathodes

Kachwala, A., Chubenko, O., Kim, D., Simakov, E. I., & Karkare, S. (2022). Quantum efficiency, photoemission energy spectra, and mean transverse energy of ultrananocrystalline diamond photocathode. *Journal of Applied Physics, 132*(22).

Kachwala, A., Saha, P., Bhattacharyya, P., Montgomery, E., Chubenko, O., & Karkare, S. (2023). Demonstration of thermal limit mean transverse energy from cesium antimonide photocathodes. *Applied Physics Letters*, *123*(4).

Kachwala, A., et. al., IPAC 2023/2024. arXiv preprint arXiv:2406.08678 (2024).

Kachwala, A., Chubenko, O., Kim, D., Simakov, E. I., & Karkare, S. (2024). Ultrafast laser triggered electron emission from ultrananocrystalline diamond pyramid tip cathode. *Journal of Applied Physics, 135*(12).

Kachwala, A., et. al., NAPAC 2022. Kachwala, A., et. al., IPAC 2023. Manuscript Under Preparation.

Applied Physics Letters 120.19 (2022): 194102. Chemical Physics Letters 430.4-6 (2006): 345-350.

9/25/2024

Research Work: Various Photocathodes

Kachwala, A., Chubenko, O., Kim, D., Simakov, E. I., & Karkare, S. (2022). Quantum efficiency, photoemission energy spectra, and mean transverse energy of ultrananocrystalline diamond photocathode. *Journal of Applied Physics*, *132*(22).

Kachwala, A., Saha, P., Bhattacharyya, P., Montgomery, E., Chubenko, O., & Karkare, S. (2023). Demonstration of thermal limit mean transverse energy from cesium antimonide photocathodes. *Applied Physics Letters*, *123*(4).

Kachwala, A., et. al., IPAC 2023/2024. arXiv preprint arXiv:2406.08678 (2024).

Kachwala, A., Chubenko, O., Kim, D., Simakov, E. I., & Karkare, S. (2024). Ultrafast laser triggered electron emission from ultrananocrystalline diamond pyramid tip cathode. *Journal of Applied Physics, 135*(12).

Kachwala, A., et. al., NAPAC 2022. Kachwala, A., et. al., IPAC 2023. Manuscript Under Preparation.

Applied Physics Letters 120.19 (2022): 194102. Chemical Physics Letters 430.4-6 (2006): 345-350.

9/25/2024

(N) UNCD Photocathode

- Mechanical
- Vacuum Stability

Improve performance at $\lambda > 200 \text{ nm}$

Introduce Negative Electron Affinity by *n*-doping of diamond films and surface treatment in hydrogen environment

9/25/2024

(N) UNCD Photocathode

Raman spectrum of the (N)UNCD sample showing a characteristic disordered diamond (D) peak and graphite (G) peak.

9/25/2024

- $\lambda: 200 300 \text{ nm}$
- Laser spot size: approx.100 μm X 250 μm (AOI: 65°)
- Extraction Field: 5 kV/m 500 kV/m

(N) UNCD Photocathode: QE Measurement

$$QE \propto (\hbar\omega - \Phi_{effective})^2$$

$$\Phi = 4.4 \pm 0.1 \text{ eV}$$

Comparable to Previously Reported Values

Comparable to Metal Photocathodes

Quintero et al. Applied Physics Letters 105.12 (2014) Chen, et al. Applied Physics Letters 114.9 (2019) Chen et al. Applied Physics Letters 117.17 (2020)

(N) UNCD Photocathode: MTE Measurement

9/25/2024

(N) UNCD Photocathode: MTE Measurement

9/25/2024

(N) UNCD Photocathode: MTE Measurement

Why is MTE limited to 70 meV at threshold?

Chemical Roughness

$$\text{MTE}_{wf} = \frac{\pi^2 h^2 e}{4\sqrt{2}aE_0}$$

 Φ graphite = ~4.4 eV Φ diamond = ~5.4 eV

Phys. Rev Applied, 4, 024015 (2015).

$$MTE = MTE_{kT} + MTE_{field} + MTE_{wf}$$

 $MTE_{kT} \sim 25 \text{ meV}$ at 300 K

 $MTE_{field} \sim 25 \text{ meV}$

 $MTE_{wf} \sim 20 \text{ meV}$

Chen, et al. Applied Physics Letters 117.17 (2020)

9/25/2024

(N) UNCD Photocathode: Electron Energy Spectra

9/25/2024

(N)UNCD: Conclusion

Parameter	Measured
Φ	$4.4 \pm 0.1 \text{ eV}$
MTE	~70 meV
QE	~10 ⁻⁶

9/25/2024

9/25/2024

High QE Photocathodes

9/25/2024

akachwal@asu.edu

Cs₃Sb for High Brightness Applications

40 meV at 300K (Expected 25 meV) 22 meV at 90K (Expected 8 meV)

9/25/2024

Cs₃Sb: Efforts to Grow Smooth Films

Co-Deposition on Lattice Matched Substrate

Applied Physics Letters 120.19 (2022): 194102.

Thin STO: RMS surface roughness = 0.3 nm Average spacing b/w peaks = 60 nm.

Thick STO: RMS surface roughness = 0.6 nm Average spacing b/w peaks = 100 nm.

On Si: RMS surface roughness = 1.4 nm Average spacing b/w peaks = 100 nm. Observe Knee at $\hbar\omega = 2.1 \text{ eV} (\lambda = 620 \text{ nm})$

9/25/2024

Cs₃Sb: Photoemission Electron Energy Spectra

9/25/2024

9/25/2024

Cs₃Sb: Mean Transverse Energy

- 1) Physical Review Special Topics-Accelerators and Beams 18.11 (2015): 113401.
- 2) Applied Physics Letters 99.15 (2011).

- At $\hbar \omega = 1.5 \text{ eV}$, MTE = 30 meV (~25 meV at 300 K)
- At $\hbar \omega = 1.8$ eV, MTE = 40 meV and at $\hbar \omega = 2.3$ eV, MTE = 150 meV (comparable to previously reported values)
- The dotted line is the plot for (excess energy)/3 considering Φ = 1.5 eV (green) and Φ = 1.9 eV (brown)
- MTE doesn't scale as 1/3rd of excess energy (Scattering before emission)

Cs₃Sb: Quantum Efficiency

- QE at $\hbar \omega = 1.5$ eV is 7 orders of magnitude lower when compared with that at $\hbar \omega = 2.3$ eV
- A knee-like feature is also observed in the QE spectral response at $\hbar \omega = 2.1$ eV
- Unstable D0₃ cubic structure

1) Applied Physics Letters 120.19 (2022): 194102.

Nangoi, J. K., et al. arXiv preprint arXiv:2205.14322 (2022)

Cs₃Sb: Conclusion

These photocathodes to be used in SLAC-LCLS-II-HE

Ρ	arameter	Threshold	Operational
	ħω	$1.5 \pm 0.1 \text{ eV}$	1.8 eV
	MTE	~30 meV	~40 meV
Q	E (at Φ)	10-7	10-4
		Comparable to	Better than
		Metal	Metal

Photocathodes

Photocathodes

1) Physical Review Special Topics-Accelerators and Beams 18.11 (2015): 113401.

2) Applied Physics Letters 99.15 (2011).

9/25/2024

Need for Small Emission Area Photocathodes

Need for Small Emission Area Photocathodes

Ultramicroscopy 176 (2017): 63-73.

2018 IEEE Advanced Accelerator Concepts Workshop (AAC). IEEE, 2018.

Need for Small Emission Area Photocathodes

UED Beamlines with Collimating Apertures

9/25/2024

Small Emission Area Photocathodes: Reducing σ_x

Conventional way of focusing light

Surface Plasmon Polariton

Achieve nanoscale electron emission area from Plasmonic Gold **Spiral**

Source: Circularly Polarized Gaussian; $\hbar \omega = 1.55 \text{ eV} (\lambda = 800 \text{ nm})$; Pulse Length = 150 fs; $\lambda_{spp} = 783 \text{ nm}$

9/25/2024

Plasmonic Spiral Photocathode: Experimental

9/25/2024

akachwal@asu.edu

Plasmonic Spiral Photocathode: Experimental

9/25/2024

Plasmonic Spiral Photocathode: Experimental

9/25/2024

Spiral Photocathode: Order of Emission

Spiral Photocathode: Spot Size

9/25/2024

akachwal@asu.edu

Spiral Photocathode: MTE

Spiral Photocathode: Emittance

Spiral Photocathode: Emittance Extrapolated

9/25/2024

Spiral Photocathode: 4D-Brightness

Maximum 4-D Brightness achieved: ~85 electrons/nm² ($\langle xp_x \rangle = 0$)

Brightness decreases • $e^- - e^-$ interaction

Maximum 4-D Brightness achieved: ~600 electrons/nm² ($\varepsilon_{nx} = 40$ pm-rad)

The gray area shows the region in which the brightness from spiral could lie depending on the nature of the correlations developed in x and p_x due to the Coulomb interactions

akachwal@asu.edu

Conclusion

(N)UNCD Photocathode

- Vacuum Robustness
- Good for application which have poor vacuum conditions

<u>Cs₃Sb</u> <u>Photocathode</u>

- Stringent vacuum requirements
- Can be used for applications that required high current

Plasmonic Spiral Photocathode

- Vacuum Robustness
- Limited Charge
- Stroboscopic UED/UEM
- Shaped Electron Beams

Future Work

- Photoemission from NEA (N)UNCD
- Photoemission studies of epitaxial Cs₃Sb/CsSb and other alkali antimonide photocathodes such as K₂CsSb and Na₂KSb
- Study the performance of (N)UNCD, Cs₃Sb and other alkali antimonide photocathodes at cryogenic temperatures
- Integrate Spirals (small spot size) with alkali antimonides (small MTE)
- Photoemission from plasmonic bowtie structure or hybrid plasmonic structure ($\varepsilon_{nx} \sim 10 \text{ pm-rad}, B_{4D} \sim 10,000 \text{ electrons/(nm}^2\text{Sr)}$
- Work function engineered electron sources
- Test in Accelerator Environment

Osa Continuum 4.1 (2021): 193-211

Acknowledgements

ASU Prof. Siddharth Karkare Dr. Pallavi Saha Dr. Gevork Gevorkyan Dr. Chris Knill Endy Gonzalez Carlos Sarabia Prof. Oksana Chubenko Dr. Danielle Filippetto

9/25/2024

Thank You! Questions? Comments?

Back Up Slides

9/25/2024

akachwal@asu.edu

Photonics Integrated Cathodes

9/25/2024

Photonics Integrated Cathodes: Cs₃Sb

9/25/2024

Photonics Integrated Cathodes: Cs₃Sb

- Si_3N_4 waveguide with the cross section of the order of wavelength and high aspect ratios support fundamental as well as higher order modes at a single wavelength.
- Transverse patterns are formed due to interference between these copropagating modes.

9/25/2024

Photonics Integrated Cathodes: Oxide Pattern

Optical Microscope Image: SiO_2 blocks on top of Si_3N_4 waveguide

Acknowledgement: Prof. Rehan Kapadia, Dr. Ragib Ahsan and Hyun Uk Chae

PEEM Image: SiO₂ blocks on top of Si₃N₄ waveguide; $\lambda = 522$ nm; Film thickness ~ 5 nm; QE ~ 0.5 %

9/25/2024

9/25/2024

PEEM Image: Multiple Si₃N₄ waveguide; $\lambda = 522$ nm; Film thickness ~ 5 nm; QE ~ 0.5 %

9/25/2024

PEEM Image: Multiple Si₃N₄ waveguide; $\lambda = 522$ nm; Film thickness ~ 5 nm; QE ~ 0.5 %

9/25/2024

PEEM Image: Multiple Si₃N₄ waveguide; $\lambda = 522$ nm; Film thickness ~ 5 nm; QE ~ 0.5 %

9/25/2024

MTE

•
$$TE = \frac{1}{2} \left(m v_x^2 + m v_y^2 \right) = \frac{\hbar^2}{2m} \left(k_x^2 + k_y^2 \right)$$

•
$$MTE_{\chi} = \frac{\hbar^2}{2m} \frac{\int k_{\chi}^2 e^{-\frac{1}{2} \left(\frac{k_{\chi}}{\sigma_{\chi}}\right)^2} dk_{\chi}}{\int e^{-\frac{1}{2} \left(\frac{k_{\chi}}{\sigma_{\chi}}\right)^2} dk_{\chi}}$$
, $\int_{-\infty}^{\infty} x^2 e^{-ax^2} = \frac{1}{2} \sqrt{\frac{\pi}{a^3}}$, $\int_{-\infty}^{\infty} e^{-ax^2} = \sqrt{\frac{\pi}{a}}$

•
$$MTE_x = \frac{\hbar^2 \sigma_x^2}{2m}$$
, $MTE_y = \frac{\hbar^2 \sigma_y^2}{2m}$
• $MTE = MTE_x + MTE_y = \frac{\hbar^2 (\sigma_x^2 + \sigma_y^2)}{2m} = \frac{\hbar^2 \sigma^2}{2m}$

9/25/2024

akachwal@asu.edu

Brief Description of PEEM

9/25/2024

Maximum Extracted Charge

Electric Field due to Uniformly Charged Disk:

$$E_{disc} = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{z}{\sqrt{z^2 + R^2}} \right)$$

For $R >> z$.

$$E_{disc} = \frac{\sigma}{2\varepsilon_0}$$

Now the emission ceases once the applied electric field is equal to the electric field due to the emitted electron bunch and hence, we have,

$$E = \frac{\sigma}{\varepsilon_0}$$
$$E = \frac{Q_{max}}{A\varepsilon_0}$$
$$Q_{max} = \varepsilon_0 A E$$

9/25/2024

akachwal@asu.edu

(N)UNCD Pyramid Tip Cathode: Energy Spectra

9/25/2024

(N)UNCD Pyramid Tip Cathode: SEM After

(a) Structural change in the tip at the apex of(N)UNCD PTC after irradiation with femtosecond laser with the pulse length of 150 fs and central wavelength of 800 nm

(b) (N)UNCD PTC showing laser-induced periodic surface structures (LIPSS) on the pyramid face exposed to the incident laser. The LIPSS were oriented perpendicular to the direction of the electric field of the incident laser with a spatial period of the order of 800 nm.

Spiral Compensation

$$\frac{\Delta p}{c} = \frac{\Delta r}{v_{sp}}$$
$$\Delta r = \frac{(\Delta p)(v_{sp})}{c}$$
$$\Delta r = \frac{(\Delta p)(\lambda_{sp})}{\lambda} = \frac{(\Delta x \sin(\theta))(\lambda_{sp})}{\lambda}$$
$$x' = r\cos(\phi) + r\cos(\phi)\sin(\theta)\left(\frac{\lambda_{sp}}{\lambda}\right)\cos(\phi)$$
$$y' = r\sin(\phi) + r\cos(\phi)\sin(\theta)\left(\frac{\lambda_{sp}}{\lambda}\right)\sin(\phi)$$

akachwal@asu.edu

Plasmonic Spiral: Tilt Compensation

9/25/2024

akachwal@asu.edu

New Fabrication Technique

Density of States: Gold

Physical Chemistry Chemical Physics 17.39 (2015): 26036-26042

9/25/2024

akachwal@asu.edu

77

Spiral Photocathode: MTE

Nanomaterials 7.11 (2017): 405.

9/25/2024

akachwal@asu.edu

Epitaxial Transfer of GaAs

Apply Apiezon Wax for transfer

9/25/2024