Tens of MeV ν_e -Ar CC Events and Energy Resolution in FD3 APEX

APEX Biweekly WGM Jul 25, 2024

Wei Shi, C. Zhang, D. Pershey, F. Marinho, C. Riccio, J. Jo, X. Ning

Motivation

- Diffused Supernova Neutrino Background (DSNB)
 - Neutrino fluxes from all core-collapse supernovae in the observable universe that arrive at Earth
- A potential major discovery channel for DUNE Phase II program
 - DUNE uniquely constrains ν_e via ν_e -Ar CC (<1 event/yr)
 - ν_{ρ} -e ES xsec 3 orders of magnitude smaller and energy resolution is poor due to unknown scattering angle
 - Challenging: $\sim 2.2\sigma$ evidence of excess with an expectation of 6 DSNB events at 400 kt-yrs using Phase I FD and reconstruction (σ_E/E : ~8%)
 - If Phase 2 is same E res, we are talking year 2040!
- JUNO and Hyper-K have better sensitivity to the $\bar{\nu}_{\rho}$ component via IBD
 - JUNO claims 3σ (>5 σ) in 3 (10) years (JCAP 10 (2022) 033)

ents / 400 kt-yrs

Ы

- Previous studies by D. Pershey at reconstruction level (DocDB) 23545)
 - Huge feed down in Phase I FD reconstruction
 - Many visible charge are lost, especially at higher energy
 - A large lost fraction from clustering completeness in reconstruction
 - Invisible energy like neutron emission
- Excellent energy resolution (<8%) at 10s of MeV will increase DSNB discovery potential

 - Resolve DSNB signal and three main backgrounds • Also helps other low energy physics programs (more at Dan's talk at May CM)

Motivation

- **DUNE DocDB 23545** ⁸B Background He-p Background Atmospheric Background Events / 400 kt-yrs Expected DSNB Signal 20 30 40
 - Reconstructed E_v (MeV)

Full reconstruction at SinglePhase

Simulation $v_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$

- Marley + edep-sim: mono-E from 5 MeV to 50 MeV, 1k events per 5 MeV
- Geometry: large LAr bath (200 meters long each dimension)
- Record Marley + G4 simulation info (dE/dx, timing)
 - Part I: only look at **GEN+SIM** without considering detector/light/reconstruction effects
 - See my January 11 talk at this call
 - Summary is provided next slide
 - Part II: consider dE/dx conversion to charge, light, and detection thresholds, and reconstruction
 - Presented at <u>July 10 low energy physics WGM</u>
 - This time with updated results with collected feedbacks

- Generator level:
 - Correction rule 0: add back the 1 MeV missing energy (change in nucleus binding)
 - Correction rule 1: add back the nucleon binding energy loss in 40K (nucleon multiplicity, $n/p/\alpha$)
 - n: 7.9 MeV, α: 7.1 MeV, p: ~7.6 MeV
 - Challenge 1: n (13% captured, 87% not captured)
 - Challenge 2: α , p (high ionization)
- LAr E deposition level:
 - **Correction rule 2:** add 0.51 MeV back for created electron mass (energy bias, no smearing)
 - Correction rule 3: n capture events subtract over deposit 6.1 MeV

Charge Detection Thresholds and Light Yields

- Part II: consider charge, light detection, and reconstruction
 - track level)
 - Applied realistic charge (dQ/dx) and light (dL/dx) yield from dE/dx
 - dQ: Birks model (N.B. Modified Box model produces similar results)
 - dL = dE dQ

 $dQ = 0.83 \times dE \times R_c$

Birks model

$$R_c = rac{dQ/dx}{dE/dx}$$

FIG. 1. Schematic diagram illustrating the production of free ionization electrons (e^{-}) and scintillation photons (γ) from energy deposited in liquid argon.

 $\alpha = N_{ex}/N_{i} = 0.21$

• Applied detection thresholds: 75 keV, 500 keV (ColdBox, CRP) -> applied at each edep (not

Use several APEX benchmark mean light yields 100-220 PE/MeV, and FD2 mean ~35 PE/MeV)

- $A_{3t} = 0.8, k_{3t} = 0.0486(q/MeVcm^2)(kV/cm)$

□ How we convert deposit energy to light:

If we ignore heat loss, for deposit energy dE[MeV];

- Part of it goes to charge: $dQ = dE^{*}R^{*}0.83;$
- Rest of it will become light: dL = dE - dQ
- Apply the light yield: 180PE/MeV, the number of PE for an event would be: $N_{PE} = L^*180$
- Apply the fluctuation, the detected photon number would be:

 N_{PE_rand} = Gaussian($N_{PE}, \sqrt{N_{PE}}$)

The detected energy in light:

 $L_{detected} = N_{PE_rand} *180(PE/MeV)$

 Combined with charge energy, the detected energy in total:

 $E_{LQ} = L_{detected} + Q$

APEX Light Yields at Benchmark PDEs

Drift (m)

6

1.73%: single-side-sipm-with-detached-WLS

SiPM	eff LYmin (pe/MeV)	LYmax (pe/MeV)	LYave (pe/MeV)
1.23%	59.8	171.5	100.3
1.73%	84.1	241.2	141.1
2.27%	110.4	316.5	185.1

F. Marinho

Table 1

4

Energy deposit dE —> dQ, dL, threshold

- dQ smearing is not small after adding threshold
 - 75keV is very ideal, current charge detection threshold is higher
 - If threshold is 500 keV, very poor
- Light deposit more symmetric
 - Less feed down than charge calorimetry
 - Smaller LY smears the peak
- Light calo. (220 PE/MeV LY) + charge calo. basically reproduces E_depo
 - dQ threshold drives the smearing

35MeV nue-Ar CC

Reconstruction

Full reconstruction at HD SinglePhase

Reconstruction with Pure Calorimetry (Q, L, Q+L): correction factors

1000

800

600H

400

200

0.2

- Reco 1: pure charge calorimetry
 - Correction factor: Q_75/0.54
- Reco 2: pure light calorimetry (FD3)
 - Correction factor: L_220/0.42
- Reco 2*: pure light calorimetry (FD2)
 - Correction factor: L_35/0.42
- **Reco 3:** L + Q (**FD3**)
 - (Q_75+**L_220**)/0.96
- Reco 3*: L + Q (FD2)
 - (Q_75+**L_35**)/0.953

Reconstruction with Pure Calorimetry (Q, L, Q+L)

- Reco 1: pure charge calorimetry
 - Correction factor: Q_75/0.54
 - $\sigma/\bar{E} = 1.9\%$ (11.3%/ $\sqrt{\bar{E}}$) at the main peak
- Reco 2: pure light calorimetry (FD3)
 - Correction factor: L_220/0.42
 - $\sigma/\bar{E} = 2.2\%$ (13.3%/ $\sqrt{\bar{E}}$) at the main peak
 - Pure charge and light resolution is comparable
- Reco 2*: pure light calorimetry (FD2)
 - Correction factor: L_35/0.42
 - $\sigma/\bar{E} = 5.1\%$ (29.4%/ $\sqrt{\bar{E}}$) at the main peak
 - FD3 light only E resolution can be ~2 times better than VD
- Reco 3: L + Q (FD3)
 - (Q_75+**L_220**)/0.96
 - $\sigma/\bar{E} = 1.1\%$ (6.5%/ $\sqrt{\bar{E}}$) at the main peak
 - Add L to Q in calorimetry improves the resolution at both peaks
 - Two times better resolution at the main peak
- Reco 3*: L + Q (FD2)
 - (Q_75+**L_35**)/0.953
 - $\sigma/\bar{E} = 2.2\%$ (13.1%/ $\sqrt{\bar{E}}$) at the main peak
 - FD3 Q+L resolution ~2 times better than FD2

Reconstruction: Q + L + nucleons multiplicity (n/p/ α)

- **Reco 8:** pure calorimetry Q+L and tag $n/p/\alpha$ nucleon multiplicity
 - Assume can only tag nucleons passing Qdep threshold 75keV
 - For p/ α : add back binding E
 - For neutron: add back binding E + subtract over-deposit from capture
 - FD3: $\sigma/\bar{E} = 1.3\%$ (7.5%/ $\sqrt{\bar{E}}$) @ main peak, secondary peak halved
 - FD2: σ/\bar{E} = 2.2% (13.2%/ $\sqrt{\bar{E}}$) @ main peak, secondary peak halved

$$\begin{split} E_{\nu, \ reco, \ FD3} &= (Q_{75} + L_{220})/0.96 + 7.35 \ MeV * (N_{p, \ Q_{p,75keV} > 0} + N_{\alpha, \ Q_{\alpha,75keV} > 0}) + 7.9 \ MeV * N_{n, \ Q_{p,75keV} > 0} - 6.1 \ MeV * N_{n, \ captured} + 0 \\ E_{\nu, \ reco, \ VD} &= (Q_{75} + L_{35})/0.953 + 7.35 \ MeV * (N_{p, \ Q_{p,75keV} > 0} + N_{\alpha, \ Q_{\alpha,75keV} > 0}) + 7.9 \ MeV * N_{n, \ Q_{p,75keV} > 0} - 6.1 \ MeV * N_{n, \ captured} + 0 \end{split}$$

Reconstruction: Q + L - different FD3 average LY

- Reco 3**: pure calorimetry Q+L
 - (Q_75+**L_100**)/0.955: main peak $\sigma/\bar{E} = 1.5\%$ (8.8%/ $\sqrt{\bar{E}}$)
 - $(Q_75+L_140)/0.96$: main peak $\sigma/\bar{E} = 1.3\%$ $(7.5\%)/\sqrt{\bar{E}}$
 - (Q_75+**L_180**)/0.96: main peak $\sigma/\bar{E} = 1.2\%$ (7.1%/ $\sqrt{\bar{E}}$)
 - $(Q_75+L_220)/0.96$: main peak $\sigma/\bar{E} = 1.3\%$ $(7.5\%)/\sqrt{\bar{E}}$
 - N.B. LY uniformity is not considered here

(Q_depoTotal_th_75keV+L_depoTotal_avg_100PEpMeV)/0.955 {E_nu==35}

Summary - Part 2

- FD3 pure L calorimetry can provide comparable or **better** resolution to pure Q calorimetry (**Q with very** optimistic threshold 75keV)
 - LY=220 PE/MeV: $\sigma/\bar{E} = 2.2\%$ (13.3%/ $\sqrt{\bar{E}}$) @35 MeV
 - Q (75keV): $\sigma/\bar{E} = 1.9\%$ (11.3%/ $\sqrt{\bar{E}}$) @35 MeV
- Pure Q+L resolution ~2 times better than Q or L only
 - $\sigma/\bar{E} = 1.1\%$ (6.5%/ $\sqrt{\bar{E}}$) @35MeV
- **FD3** E resolution can be ~2 times better than VD
 - 2.2% (FD3) vs 1.3% (VD) @35MeV
- Nucleon (n/alpha/p) multiplicity tagging (assume those) failed 75 keV dQ threshold can't be tagged)
 - Smearing to the secondary peak is reduced by **50%**

Conclusion & Discussion

- Phase II PDS can deliver 2 times better energy resolution (either L only or Q+L) compared to Phase I PDS at the energy ROI of DSNB search
- Binding energy loss from nucleon knockout from primary ν_{ρ} -Ar CC interaction causes the secondary reconstructed peak seen in Phase I FD
- DSNB ROI window
 - Secondary peak from Hep/8B no impact on DSNB \rightarrow improve main peak E resolution, Q+L is our best shot (2 times better Eres than L or Q only)
 - Secondary peak from atm bkg will affect DSNB → tag and reject/include events with nucleons as many as we can
- Nucleon tagging will be crucial for DSNB search to reject the secondary peak
 - Neutrons most important: can tag n-capture (ongoing program @VD CB/PD-VD), more challenging if not captured
 - Also important to tag high dE/dx nucleons: alphas/protons etc (can this be demonstrated in ProtoDUNE?)

