
Accelerator sources usually have small range of energy: ∼ 0.1,10 GeV
• 𝜈 beam energies are tuned to oscillation maxima given chosen baseline

• Many possible interactions: CC/NC, quasielastic, resonant production…
• Well-known incoming direction from geometrically diverging beam

• No historic need to reconstruct 𝜃!, only 𝐸!
• Timing from proton beam pulse helps eliminate backgrounds
Atmospherics have huge range of energy: ∼ 0.1,1000 GeV
• Even more high energy processes possible! Containment issues abound…and 𝜏s!
• Many baselines from all around the globe! Like having many accelerators all over!
• Many baselines from many incoming angles! Not just one…
• No timing info to quell backgrounds—detectors deep underground to avoid cosmic 𝜇s

• These 𝜈s become very hard to reconstruct because of these factors…

Most 𝜈 energy estimators do not consider the full kinematics of the 𝜈
• Optimize a single loss function of a single variable, 𝑠!:
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• 𝜈 should be defined by more than simply their 𝐸!…need momenta info!
𝐸! , 𝑝(! , 𝑝)! , 𝑝*! ∝ 𝐸! , 𝜃! ∝ 𝐸! , 𝐿 𝜃!

• Should continue training until four-vector components are kinematically consistent!
• Must include new inputs to loss function!
• Otherwise: 𝑬𝝂 ≈ 𝒑𝝂𝟏𝒑𝒓𝒆𝒅 ≈ 𝒑𝝂𝟐𝒑𝒓𝒆𝒅 while 𝜽𝝂 ≉ 𝜽𝟏𝒑𝒓𝒆𝒅 ≉ 𝜽𝟏𝒑𝒓𝒆𝒅
• There is no automatic guarantee that angular correlations are respected in a 

kinematically consistent way without a loss function which penalizes such behavior
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Measure 𝜈 interaction counts in our detectors…
Must use an interaction model to deconvolute the 𝜈 flux
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A ratio of Far to Near Detector event spectra shows dependencies on…
• Flavor mixing angle 𝜃 (not 𝜈 direction!) & mass state splitting Δ𝑚!

Event spectra are in 𝐸&#%,-, but we calculate oscillations given 𝐸&"#$%!
• Understand mapping between these with 𝜈 event generators, reconstruction software
Machine learning 𝜈 energy estimators can perform this reconstruction
• Improvements possible in ML algorithms with physics motivations at heart!
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There are many sources of 𝜈s
• Accelerator & atmospherics are key 
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Neutrinos oscillate their flavor
• Dependent on 𝐄𝛎, 𝑳 𝜽𝝂
Most neutrino beams begin with 𝜈. flavor
• Created from meson decays following spallation
• Oscillate into 𝜈$ principally and some 𝜈%

~𝟏-𝟏𝟎𝟎𝐌 events!
~𝟏𝟎𝟎-𝟏𝟎𝐤 events!Line source of 𝝂s

Point source of 𝝂s

Expected 𝜈" Spectra 
at DUNE 

Self-(In)Consistent Kinematics in 𝝂 Energy Estimators
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Composite Loss Functions for Kinematic Estimators
Seek to encourage faster, accurate, kinematically consistent learning
• Instead: make the loss composite and multivariate
• Utilize possibly many kinematic variables simultaneously: 𝑠! , 𝑥! , …
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• Can use this to imbue more physics into the loss function!
• “Physics motivated loss functions”, “Physics informed machine learning” (PIML)

• Individual loss functions 𝐿-, 𝐿( , …  create a composite ℒ with
• Composite loss ℒ optimized

Initial loss variable combinations to be considered during trainings
• “Target” variables for predictions which enter losses against truth values

𝐸! , 𝑝(! , 𝑝)! , 𝑝*! , 𝑝(! , 𝑝)! , 𝑝*! , 𝐸! , cos 𝜃! , 𝐸! , 𝜃!
• Can calculate angular values from predicted/true momenta

• Will compare to single variable trainings: 𝐸! , cos 𝜃! , 𝜃!

Transformer Training Variables
Figure from adapted rom S. Wu
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Transformer network used for initial studies
• Training variables organized as vector & scalar

• Scalar: whole, event-level kinematic variables
𝑃&'(, 𝐾𝐸&'(, 𝑃)*++

• Vector: “visible” (above threshold) final state particle kinematics
PDG, , Mass, , 𝐾𝐸, , 𝑃-, , 𝑃., , 𝑃/, , cos 𝜃, , 𝜃,

Training Sample Preparation w/GENIE Simulation
Large, truth level samples of 𝜈 interactions available
• GENIE used by 𝜈 experiments to predicted final state particles from initial 

state neutrino interactions on nuclei
• Can simulate beam and atmospheric neutrinos across many energies
Initial challenge of this project: improve atmospheric 𝜈 reconstruction
• Utilize Inclusive, 𝐶𝐶,𝑁𝐶, NpN𝜋, 1𝑝0𝜋,𝑁𝑝0𝜋…. selections for topologies

• Make realistic selections on final state particles only above kinematic thresholds
• All done at truth-level—will utilize reconstructed values w/experiments!

Vector Input Scalar Input
“Prong” level inputs “Slice” level inputs

Training

Validation

Selection:
𝐸&ϵ 0.1,1 GeV 
All processes

All 𝜈 flavors
All topologies 

Any number protons, pions, etc.
Loss variables: 𝐸#, 𝑝$! , 𝑝%! , 𝑝&!

Selection:
𝐸!ϵ 0.1,1 GeV 

All 𝜈 flavors
Loss variables: 
𝐸! , 𝑝'# , 𝑝(# , 𝑝)#

Changing loss 
variables leads to 

different 
resolutions

Low-𝐸! reconstruction difficult…work needed on 𝜃!
• Fermi motion, Intranuclear cascade, many incoming 𝜃01(2'
Targeting GENIE-oriented publication first
• Both atmospherics & beam comparisons
• DUNE-&-NOvA-oriented publications to follow w/fully 

reconstructed inputs

Initial Comparisons: Atmospherics w/𝑬𝝂 < 𝟏𝐆𝐞𝐕

Selection:
𝐸!ϵ 0.1,1 GeV 

All 𝜈 flavors
Loss variables: 
𝐸! , 𝑝'# , 𝑝(# , 𝑝)#

Selection:
𝐸!ϵ 0.1,1 GeV 
All processes

All 𝜈 flavors
All topologies 

Any number protons, pions, etc.

Fermi motion?

Choice of training & 
target variables

under investigation

Energy Resolution
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