Enforcing Self-Consistent Kinematic Constraints in Neutrino Energy Estimators

R. R. Richi (Franklin & Marshall College), J. L. Barrow (UMN), S. Wu (UMN), T. Thakore (U. of Cincinnati)

FERMILAB-POSTER-24-0163-STUDENT

Neutrino Oscillations & Interactions

- Neutrinos oscillate their flavor
- Dependent on $\{\mathbf{E}_{\nu}, L(\boldsymbol{\theta}_{\nu})\}$
- Most neutrino beams begin with v_{μ} flavor
- Created from meson decays following spallation
- Oscillate into v_{τ} principally and some v_{e}
- Measure v interaction counts in our detectors... Must use an interaction model to deconvolute the v flux

- A ratio of Far to Near Detector event spectra shows dependencies on...
- Flavor mixing angle θ (not ν direction!) & mass state splitting Δm^2
- Event spectra are in $E_{\nu}^{\rm reco}$, but we calculate oscillations given $E_{\nu}^{\rm true}$!
- Understand mapping between these with v event generators, reconstruction software Machine learning v energy estimators can perform this reconstruction
 Improvements possible in ML algorithms with physics motivations at heart!

A Cetector -1-100M events! Point source of vs Target Magnetic horns Cetector Violation is Figure adapted from Long-Baseline Neutrino Experiments, M. V. Diwan et al.

Accelerator sources usually have small range of energy: $\sim \{0.1, 10\}$ GeV

- v beam energies are tuned to oscillation maxima given chosen baseline
 - Many possible interactions: CC/NC, quasielastic, resonant production...
- Well-known incoming direction from geometrically diverging beam
- No *historic* need to reconstruct θ_{ν} , only E_{ν}
- Timing from proton beam pulse helps eliminate backgrounds

Atmospherics have *huge* range of energy: ~ {0.1,1000}GeV

- Even more high energy processes possible! Containment issues abound...and τ s!
- Many baselines from all around the globe! Like having many accelerators all over!
- Many baselines from **many incoming angles**! Not just one...

• No timing info to quell backgrounds—detectors deep underground to avoid cosmic μ s

• These vs become very hard to reconstruct because of these factors...

Self-(In)Consistent Kinematics in v Energy Estimators

Most v energy estimators do not consider the full kinematics of the v

• Optimize a single loss function of a single variable, s_{ν} :

 $L\left(s_{\nu}^{\text{true}}, s_{\nu}^{\text{pred}}\right) = \dots = L\left(E_{\nu}^{\text{true}}, E_{\nu}^{\text{pred}}\right)$

• v should be defined by more than simply their E_{ν} ...need momenta info!

 $(E_{\nu}, p_{x_{\nu}}, p_{y_{\nu}}, p_{z_{\nu}}) \propto (E_{\nu}, \theta_{\nu}) \propto (E_{\nu}, L(\theta_{\nu}))$

- Should continue training until four-vector components are kinematically consistent!
- Must include <u>new inputs to loss function</u>!

Fermiab

- Otherwise: $E_{\nu} \approx \left| p_{\nu_{1_{pred}}} \right| \approx \left| p_{\nu_{2_{pred}}} \right|$ while $\theta_{\nu} \approx \theta_{1_{pred}} \approx \theta_{1_{pred}}$
- There is no automatic guarantee that angular correlations are respected in a kinematically consistent way without a loss function which penalizes such behavior

Composite Loss Functions for Kinematic Estimators

- Seek to encourage faster, accurate, kinematically consistent learning
- Instead: make the loss composite and multivariate
- Utilize possibly many kinematic variables *simultaneously*: {s_ν, x_ν, ...} L({s^{true}, s^{pred}_ν}, {x^{true}, x^{pred}_ν}, ...) = αL_s (s^{true}, s^{pred}_ν) + βL_x (x^{true}, x^{pred}_ν) + ... Can use this to imbue more physics into the loss function!
 "Physics motivated loss functions", "Physics informed machine learning" (PIML)
 Individual loss functions {L_s, L_x, ...} create a composite L with
 Composite loss L optimized *Initial* loss variable combinations to be considered during trainings
 "Target" variables for *predictions* which enter losses against *truth* values (E_ν, p_{x_ν}, p_{y_ν}, p_{z_ν}), (p_{x_ν}, p_{y_ν}, p_{z_ν}), (E_ν, cos θ_ν), (E_ν, θ_ν)
 Can calculate angular values from predicted/true momenta
 Will compare to single variable trainings: E_ν, cos θ_ν, θ_ν

* *

Training Sample Preparation w/GENIE Simulation

Large, truth level samples of ν interactions available

- GENIE used by ν experiments to predicted final state particles from initial state neutrino interactions on nuclei
- Can simulate beam and atmospheric neutrinos across many energies Initial challenge of this project: improve atmospheric v reconstruction
- Utilize Inclusive, CC, NC, NpN π , 1p0 π , Np0 π selections for topologies
 - Make realistic selections on final state particles only above kinematic thresholds
- All done at truth-level—will utilize reconstructed values w/experiments!

Initial Comparisons: Atmospherics w/ E_{ν} < 1GeV

		Atmospheric Neutrino Energy Reconstruction		
	Selection: 3.0	+ Energy Only: MEAN = -0.0, RMS = 0.3 + 3 Mom: MEAN = -0.3, RMS = 0.4	8000 -	Fully Inclusive,All Flavors,NpNpi
0.36 -	$E_{\nu} \epsilon (0.1, 1) \text{GeV} > 2.5$	+ 4 Mom: MEAN = 0.0, RMS = 0.3	7000 -	All CC,All Flavors,NpNpi
0.35 -		variables leads to $E_{\nu} \epsilon(0.1,1) \text{GeV}$	6000 -	Selection
0.34 -		different All processes	ents	$E_{c}(0,1,1)C_{c}V$

- Fermi motion, Intranuclear cascade, many incoming $\theta_{\nu}^{\text{atmo}}$
- Targeting GENIE-oriented publication first
- Both atmospherics & beam comparisons
- DUNE-&-NOvA-oriented publications to follow w/fully reconstructed inputs

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

U.S. DEPARTMENT OF

ENERGY