
Mode (1): Qubit & Qudit Controls under dispersive coupling
 - Dispersive approximation: |∆| = 𝜔! −𝜔" ≫ 𝑔 
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where 𝝌 = 𝟐𝒈𝟐/∆ is called the dispersive shift
 - Qubit control: 𝐻"&'(

! (𝑡) = 𝐼! 𝑡 𝜎)+ 𝑄! 𝑡 𝜎*

 - Qudit control: 𝐻"&'(" (𝑡) = 𝐼" 𝑡 (𝑎 + 𝑎%) + i	𝑄" 𝑡 (𝑎 − 𝑎%)
Mode (2): Qubit Control & Tunable Coupling
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 - Qubit control: 𝐻"&'(
! (𝑡) = 𝐼! 𝑡 𝜎)+ 𝑄! 𝑡 𝜎*

 - 𝑔-control: 𝐻"&'(
+ (𝑡) = 𝑔, 𝑡 (𝑎𝜎-+ 𝑎%𝜎.)+ 𝑖𝑔/(𝑡)(𝑎𝜎-− 𝑎%𝜎.)

where 𝝈𝒙	is the Pauli-X operator; 𝝈𝒚	is the Pauli-Y operator
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Abstract
In this work, we develop a protocol to find the optimal control 
pulse for implementing the Quantum Fourier Transform (QFT) on 
qudit-based hardware. We focus on two types of controls: (1) 
qubit-qudit dispersive coupling with qubit and qudit drives, and (2) 
qubit-qudit system with tunable coupling and qubit drive. We 
observe that for both systems, the minimum gate time grows 
linearly as a function of the size of the logical space. We find that 
the latter system supports faster pulse, requiring 45% shorter 
pulse time.

- GRAPE is implemented by qutip-qtrl [3]
 - Bumper states - high energy levels 
beyond the logical states - are added to 
reduce the truncation error.

Quantum Fourier Transform (QFT)

Quantum Optimal Control

Qudit-based Architecture
Circuit Quantum Electrodynamics (cQED)
 - cQED system includes a qubit (transmon) coupling with a qudit 
(SRF cavity), described by Jaynes-Cummings Hamiltonian (ℏ=1) 

𝐻 =
1
2𝜔!𝜎

$ +𝜔"𝑎%𝑎 + 𝑔(𝑎𝜎-+ 𝑎%𝜎.)

where 𝝎𝒒(𝝎𝒄) is the qubit (qudit) frequency; 𝝈&, 𝝈'(𝒂(, 𝒂)	are the qubit’s 
(qudit’s) create, destroy operators; 𝝈𝒛	is the Pauli-Z operator, 𝒈 is the 
qubit- qudit coupling strength

Image from [1]: (a) Cavity as a harmonic oscillator (b) A transmon coupling with a cavity

- Use optimal control techniques to find the pulses 𝐼! 𝑡 , 
𝑄! 𝑡 , 𝐼"(𝑡), 𝑄" 𝑡 , 𝑔, 𝑡 , 𝑔/(𝑡) that minimize the gate infidelity

1 −
1
𝑁 𝑇𝑟 𝑈&0'+

% 	𝕋	𝑒𝑥𝑝 B
#

1
−𝑖 𝐻# +𝐻"&'( 𝑡 𝑑𝑡

where 𝑵 is the dimension of total Hilbert space; 𝑼𝒕𝒂𝒓𝒈 is the target 
unitary;  𝕋 is the time-ordered operator 
    - Gradient Ascent Pulse Engineering (GRAPE) [2]: gradient-
based optimization algorithm that computes the gradient using 
backward and forward propagation

QFT is a crucial element of prime factorization (Shor’s algorithm), 
linear systems solver (Harrow-Hassidim-Lloyd algorithm), etc.

Optimization Setup

with 𝜔 = 𝑒./0/2	

- Careful investigations on the impact of increasing number of 
bumper states (𝑛2) and timesteps (𝑛&3) on the optimization results 
help identify the optimal values for 𝑛2 and 𝑛&3. 
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Results

- Minimum gate time grows 
linearly with the size of the 
logical space.
- Qubit and tunable-
coupling control supports 
pulses that are 45% shorter 
compared to qubit-qudit 
controls.
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Quantity Values
𝜔3/2𝜋 6 GHz
𝜔4/2𝜋 4.5 GHz
𝜒/2𝜋 -5 MHz

𝑄𝐹𝑇4 =
1
𝑛

1 1 1 … 1
1 𝜔 𝜔5 … 𝜔4.6
1 𝜔5 𝜔7 … 𝜔5(4.6)
⋮ ⋮ ⋮ ⋱ ⋮
1 𝜔4.6 𝜔5(4.6) … 𝜔(4.6)(4.6)
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Final optimization parameters: at most 20000 iterations; optimization 
tolerance of 1e-10; 𝑛56 =	250/channel (1000 in total); 𝑛7 	dependent on 𝑛


