Optimal Control for Fourier Transform on Qudits

Triet Ha (Rhodes College), Andy C. Y. Li (Fermi National Accelerator Laboratory)

Abstract

In this work, we develop a protocol to find the optimal control pulse for implementing the Quantum Fourier Transform (QFT) on qudit-based hardware. We focus on two types of controls: (1) qubit-qudit dispersive coupling with qubit and qudit drives, and (2) qubit-qudit system with tunable coupling and qubit drive. We observe that for both systems, the minimum gate time grows linearly as a function of the size of the logical space. We find that the latter system supports faster pulse, requiring 45% shorter pulse time.

Qudit-based Architecture

Circuit Quantum Electrodynamics (cQED)

- cQED system includes a qubit (transmon) coupling with a qudit (SRF cavity), described by Jaynes-Cummings Hamiltonian $(h=1)$

$$
H = \frac{1}{2}\omega_q \sigma^z + \omega_c a^\dagger a + g(a\sigma^+ + a^\dagger \sigma^-)
$$

where $\omega_a(\omega_c)$ is the qubit (qudit) frequency; σ^+ , $\sigma^-(a^{\dagger}, a)$ are the qubit's (qudit's) create, destroy operators; σ^z is the Pauli-Z operator, g is the qubit- qudit coupling strength

Mode (1): Qubit & Qudit Controls under dispersive coupling

- Dispersive approximation: $|\Delta| = |\omega_q - \omega_c| \gg g$ 1

$$
H_0 \approx \frac{1}{2} \omega_q \sigma^z + \omega_c a^\dagger a + \frac{1}{2} \chi a^\dagger a \sigma^z
$$

where $\chi = 2g^2/\Delta$ is called the dispersive shift

- Qubit control:
$$
H_{ctrl}^q(t) = I_q(t)\sigma^x + Q_q(t)\sigma^y
$$

- Qudit control:
$$
H_{ctrl}^c(t) = I_c(t)(a + a^{\dagger}) + i Q_c(t)(a - a^{\dagger})
$$

Mode (2): Qubit Control & Tunable Coupling

$$
H_0 = \frac{1}{2}\omega_q \sigma^z + \omega_c a^\dagger a
$$

- Qubit control:
$$
H_{ctrl}^q(t) = I_q(t)\sigma^x + Q_q(t)\sigma^y
$$

- *g*-control:
$$
H_{ctrl}^g(t) = g_I(t)(a\sigma^+ + a^\dagger \sigma^-) + ig_Q(t)(a\sigma^+ - a^\dagger \sigma^-)
$$

where σ^x is the Pauli-X operator; σ^y is the Pauli-Y operator

Quantum Optimal Control

- Use optimal control techniques to find the pulses $I_a(t)$, $Q_q(t)$, $I_c(t)$, $Q_c(t)$, $g_I(t)$, $g_O(t)$ that minimize the gate infidelity

$$
1 - \frac{1}{N} \left| Tr \left\{ U_{targ}^{\dagger} \mathbb{T} \exp \left[\int_0^T - i \left(H_0 + H_{ctrl}(t) \right) dt \right] \right\} \right|
$$

where N is the dimension of total Hilbert space; U_{targ} is the target unitary; T is the time-ordered operator

 - Gradient Ascent Pulse Engineering (GRAPE) [2]: gradientbased optimization algorithm that computes the gradient using backward and forward propagation

Quantum Fourier Transform (QFT)

QFT is a crucial element of prime factorization (Shor's algorithm), linear systems solver (Harrow-Hassidim-Lloyd algorithm), etc.

$$
QFT_n = \frac{1}{\sqrt{n}} \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{pmatrix} \quad \text{with } \omega = e^{2\pi i/n}
$$

Optimization Setup

- GRAPE is implemented by qutip-qtrl [3] Quantity | Values

- Careful investigations on the impact of increasing number of bumper states (n_b) and timesteps (n_{ts}) on the optimization results help identify the optimal values for n_b and n_{ts} .
Choosing in the or n=6 choosing ints for n=2

Results

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics

Qubit & Tunable-Coupling Control

 500 1000 1500 2000 2500 3000 Gate Time (ns)

- Minimum gate time grows linearly with the size of the logical space.

- Qubit and tunablecoupling control supports pulses that are 45% shorter compared to qubit-qudit controls.

References

[1] Roy et al., Proc. Sci, LATTICE2023 (**2024**) 127 [2] Khaneja et al., J. Magn. Reson. 172(2):296–305 (2005)

[3] Johansson et al., Comp. Phys. Comm. **184**, 1234 (2013)

