

VALOR/TARGET Beamline Simulation: Building Models for Different Beamlines - Accelerator Division

Presenter Name: Bryan Mann, Giancarlo Ortega and Lianne Marrero Perez

Final Presentation

7/26/2024

About Giancarlo - VALOR Intern

- Incoming freshman at Marquette University
 - Major in Computer Engineering
 - Major Interests
 - Coding and Computer Hardware
 - STEM Research
 - Sports: Volleyball and Soccer

About Lianne - TARGET Intern

- Rising Senior at Geneva Community High School
- I am interested in majoring in Pharmaceutical Sciences or Chemical Engineering as a Pre-Pharmacy major.
- My favorite hobbies are crocheting, playing my flute and doing taekwondo

Why Fermilab?

I decided to apply to the TARGET internship because I have an interest in quantum physics theories like the wave particle duality theory. I also thought it would be a fantastic opportunity to gain some experience before going to college.

3

About Bryan - TARGET Intern

Rising Junior at Waubonsie Valley High School

Interests:

Why Fermi?

- Track & Field
- Games
- Aviation
- Space exploration

Extracurriculars:

- Track
- BSA (Black Student Alliance)
- ACT-SO (Science Olympiad)

The Accelerator

- Step 1: Proton Ion source
- Step 2: Higher Energy
- Step 3: Directed to Experiment
 - Magnets

Our Project: Building Models for Several Beamlines

- Supervisor- Jason Crnkovic
 - Lessons
- Located in the LINAC with Geoffrey Donaldson
- Modeled and simulated beamlines with the use of JupyterHub Notebook and MadX program
 - Why?
 - Simple flat files
 - Supporting particle physics experiments
- NUMI beamline (Neutrinos at the Main Injector)
- BNB beamline (Booster Neutrino Beam)
- Switchyard (sends particles to three external beam areas)

What did it look like...

Detailed View of Code

14				
15	DZERO:	MARKER;		
16	Q701:	QUAD,	L=3.048000,	K1=K1P1Q1;
17	Q60_END:	DRIFT,	L=0.152400;	
18	VP701:	MONITOR,	L=0.203200;	
19	DCQ1A:	DRIFT,	L=0.106830;	
20	MRVC_END:	DRIFT,	L=0.068260;	
21	VT701:	VKICK,	L=0.152400,	ANGLE=0.000000;
22	MRVC_END:	DRIFT,	L=0.068260;	
23	DCQ1B:	DRIFT,	L=0.038490;	
24	MRVC_END:	DRIFT,	L=0.068260;	
25	VT701:	VKICK,	L=0.152400,	ANGLE=0.000000;
26	MRVC_END:	DRIFT,	L=0.068260;	
27	DCQ1C:	DRIFT,	L=0.027740;	
28	MRHC END.	DRTET	1=0 0/1270.	

Our Project: What did it look like

Examples :

Our first time running the code. (for the BNB line)

More attempts to reach an accurate beamline

Accurate Simulation of a Beamline

Learning Accelerator and Particle Physics

Workshops

• Python Workshop-

This workshop taught us the basics of coding on Python. There were challenges (practice problems) to apply the knowledge that was taught in the lectures.

- Resume Workshop-Taught us how to make resumes that highlighted our best qualities and gave us tips on how to make our resume concise.
- College Admissions Workshop -Helped us understand what it takes to be a competitive candidate for the college admission process

≔	+ Code + Text Copy to Drive
Q	os import math
	angleA=(36*(math.pi/180))
$\{x\}$	angleB=(54*(math.pi/180))
	angleC=(90*(math.pi/180))
07	
	print("Angle A in radians =",angleA)
~	print("Angle B in radians =",angleB)
	<pre>print("Angle C in radians =", angleC)</pre>
	sidea=4
	print('Side a =',sidea)
	<pre>sideb=(4*math.tan(angleB))</pre>
	<pre>print('Side b =',sideb)</pre>
	<pre>sidec= (4/math.cos(angleB))</pre>
	<pre>print('Side c =',sidec)</pre>
>	Angle A in radians = 0.6283185307179586
	Angle B in radians = 0.9424777960769379
	Angle C in radians = 1.5707963267948966
	Side a = 4
-	Side b = 5.505527681884693
-	Side $c = 6.805206466816319$

This was one of the challenges in the Python Workshop. In this challenge we worked to find the missing sides and angles of a triangle.

Workshops

College Admission

Tours

We attended many tours during these internship. Some of these tours were:

- Integrated Engineering Research Center (IERC)
- Superconducting Quantum Materials and Systems Centers (SQMS)
- Fermilab Tour (Wilson Hall + driving tour)

Dilution fridge (part of the SQMS tour)

Tours

Reflection

Lianne

Takeaways:

- Narrowed down my career interests.
- Given me a deeper understanding of particle physics and particle accelerators.

Favorite Moments:

- Touring the LINAC building
- Going to the prairie
- Touring the rest of the site

Goals:

- Become a pharmacist
- Major in chemical engineering or pharmaceutical sciences.

Gian

Takeaways:

- Professional Environment within Fermilab
- Advice for my everyday life
 - Presenting yourself
 - Career advice
- Opportunities after the internship

Favorite Moments:

- Tours to different parts of the lab.
- Learning about the Main Control Room

Goals:

 Pursue Computer Engineering and work for reputable company

Bryan

Takeaways:

- Exposure to various fields of physics and engineering
- Realistic view of STEM jobs

Favorite Moments:

- Meeting the people here
- Learning what different people work on at the lab

Goals:

• Continue to pursue engineering interests

Acknowledgements

Thanks!

Anahi Ruiz Beltran : Program lead for the Target Internship

Cortez Watkins : Program lead for the Valor Internship

Jason Crnkovic : Beams Division, External Beam Delivery Department

Susan McGimpsey : Beams Division, External Beam Delivery Department

Marco Mambelli : Scientific Computing Division

Geoffrey Donaldson: Technician in the Beams Division

Fermilab Friends

Thank you!

