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1. Integrability

A system is considered integrable if it possesses as many conserved
quantities (integrals of motion) as degrees of freedom. This is often
a consequence of underlying symmetries, as explained by Noether’s
theorem. These symmetries lead to regular, predictable motion and
preclude chaotic behavior in phase space.

Exact solutions (often approximate more complex behaviors)

Predictability and reduced complexity

Symmetries and conservation laws
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Phase space: periodic, quasi-periodic and chaotic orbits

Figure: D.R. da Costa et al. Braz J Phys 52, 75 (2022)
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RF Cavities and Financial Markets

Figure: Chirikov standard map (left) and Huang-Li finance model (right),
W. Szumiǹski Nonlinear Dyn 94, 443-459 (2018)
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2. Mappings of the plane. Dot (̇) vs. Prime (′)

Mappings arise naturally in many different situations:

Reduction of phase space in ODE via Poincaré section.

Stroboscopic Poincaré map for periodic systems.

Numerical integration (i.e. symplectic integrators)

Σ
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��

��

ṗ = F (p, q, r) ṗ = F (p, q, t) p′ = f (p, q)

q̇ = G (p, q, r) q̇ = G (p, q, t) q′ = g(p, q)

ṙ = H(p, q, r)
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“Connect the dots”
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C1. Symplectic map of the plane

We will consider area-preserving mappings of the plane

q′ = q′(q, p),
p′ = p′(q, p),

det

[
∂ q′/∂ q ∂ q′/∂ p
∂ p′/∂ q ∂ p′/∂ p

]
= 1.

Identity, Id[
1 0
0 1

] Rotation, Rot[
cos θ − sin θ
sin θ cos θ

] Reflection∗,∗∗, Ref[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
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C2. Standard form of the map

McMillan considered a special form of the map

M : q′ = p,
p′ = −q + f (p),

where f (p) is called force function (or simply force).

Invertible

Symplectic for any f (p)

Two symmetry lines:

l1 : p = q

l2 : p = f (q)/2

q

p
i2

i5

i1

i4

i3

p q

p f (q)/

=

= 2
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1D accelerator lattice with thin nonlinear lens, T = F ◦M

M :

[
y
ẏ

]′
=

[
cosΦ + α sinΦ β sinΦ

−γ sinΦ cosΦ− α sinΦ

] [
y
ẏ

]
,

F :

[
y
ẏ

]′
=

[
y
ẏ

]
+

[
0

F (y)

]
,

where α, β and γ are Courant-Snyder parameters at the thin lens
location, and, Φ is the betatron phase advance of one period.

Kicked rotator

H[p, q, t] =
p2

2m
+ k

q2

2
+ F (q)

∞∑
n=−∞

δ
( t

T
− n

)
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3. Integrable maps

A map T in the plane is called integrable, if there exists a non-
constant real valued continuous functions K(q, p), called integral,
which is invariant under T:

∀ (q, p) : K(q, p) = K(q′, p′)

where primes denote the application of the map, (q′, p′) = T(q, p).

Example: Rotation transformation

Rot(θ) : q′ = q cos θ − p sin θ
p′ = q sin θ + p cos θ

has the integral K(q, p) = q2 + p2.
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Dynamics on invariant curve/Rotation number

If θ is incommensurate with π, the iterations will result in an invari-
ant curve being traced out. However, if θ and π are commensurate,
the iterations will instead produce a discrete set of points.

�

�

�

�

ν =
θ

2π
=

m

n
∈ Q ν =

θ

2π
∈ R \Q
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Symmetry lines and Invariant of motion

First symmetry line, p = q

K(p, q) = K(q, p)

Second symmetry line, p = f (q)/2

K(p, q) = K(−p + f (q), q)
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Difficulties in the Search for Integrable Systems

a. – c. McMillan-Suris mappings

For analytic K[p, q], the invariant of the integrable mapping can take
only one of 3 forms: (I) biquadratic function of p and q [McMillan],
(II) biquadratic exponential or (III) trigonometric polynomial:

(I) : K[p, q] = A p2q2 + B (p2q + p q2)

+Γ (p2 + q2) + ∆ p q + E (p + q)

(II) : K[p, q] = A e2pe2q + B (e2peq + epe2q)

+Γ (e2p + e2q) + ∆ epeq + E (ep + eq)

(III) : K[p, q] = A cos[2(p + q)] + B (cos[2p + q] + cos[p + 2q])

+ Γ (cos[2p] + cos[2q]) + ∆ cos[p + q] + E (cos[p] + cos[q])
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d. – f. Brown-Knuth map and McMillan be-/two-headed ellipses

Linear systems (i.e. no dependence on amplitude) with piecewise
linear force f (q) = a q + b |q|

a. b. c.

d. e. f.
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4. Nonlinear mappings with polygon invariants
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Heuristic Generalization of the CNR and Brown-Knuth Maps

By employing piecewise linear continuous functions with integer ki

f (p) = ki p + d , i = 1, . . . ,N,

we discovered new previously unknown integrable systems.
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Algorithm 1. Phase Space Analysis/Polygon Identification
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Example: (k1, k2, k3) = (2, 1, 2) with d = 0.
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Results
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Results (chains of linear islands)

Tim Zolkin Machine-assisted discovery of integrable systems



5. Mappings on a torus, T2

qL

f p.l.

qL

f per

qL

f a.q.

d

F

l1 l2 l3

k1

k2
k3

L

L

b.1

cn
cc
cn

per

From torus T2 to plane R2

• Periodic “unwrapping”

fper(q) = fp.l.(q mod L) mod L

• Arithmetical quasiperiodicity

∀ q : fa.q.(q + L) = fa.q.(q) + F , F = fp.l.(L)− fp.l.(0) = const.
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Global mode locking: central cell vs. central node

qL

f p.l.

qL

f per
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Algorithm 2. Piecewise Monotonic Rotation Number
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Example: Chaotic diffusion
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Example: Integrable map
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Results (Torus)

a.1 b.1 c.1

d.1 e.1 f.1
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Results (Tessellation & Fibration by Polygons)
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Periodic and arithmetically quasiperiodic unwrappings
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Integrable diffusion
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6. Smoothening procedure

q′ = p

p′ = −q + f (p)
f (q) =

√
q2 + ϵ2 →

|ϵ|→0
|q|

Figure: Left plot (a.) illustrates invariant level sets for Brown-Knuth map,
force function f (q) = |q|. Middle plot (b.) displays invariant level sets

for Cohen map, f (q) =
√

q2 + 1. Right plot (c.) again provides invariant
level sets for Cohen map, but on a different scale showing one of the island
structures. Level sets for Cohen map are obtained by tracking. Green curve
is the second symmetry line p = f (q)/2.
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Application 1: Near-integrable systems via “smoothening”

Figure: Examples of quasi-integrable systems produced by “smoothening”
3-piece integrable polygon maps using ϵ = 0.05.
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7. Application 2: Discrete perturbation theory
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Thank you for your attention!

Questions?
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