Fermilab (C) LS. DEPARTMENT OF Office of Science

Stripline Data on Naturally-Ocurring Instabilities in the Recycler Ring

Cristhian Gonzalez-Ortiz MI Department Meeting July 31, 2024

Studies on \$E1

Special beam for studies:

- Utilize \$E1 event under the \$20 to perform experiments parasitically
- Rebunch beam from 53 MHz to 2.5 MHz and get longer bunches
- Kick all but one of the longer bunches out of the Recycler Ring
- Goal is to study collective instabilities in the Recycler
- Transverse dampers were ON at some gain and phase

辈 Fermilab

Studies on \$E1

Zero chromaticity setting is set into R2[\$E1] around 0.58 seconds into the cycle

‡ Fermilab

Stripline data on RS Scope

We can grab A + B (related to bunch profile) and A - B (related to the dipole moment). Signal $\frac{A-B}{A+B}$ will be related to the transverse displacement along bunch.

Triggered the scope with the new trigger box every 4 turns at 0.58 seconds into the \$E1 recording for 8000 triggers/pseudoturns (32000 turns ~ 0.355 seconds)

辈 Fermilab

Calibrating A+B Signal

The *A* + *B* signal (related to bunch profile) can be integrated to get $\lambda(z)dz$.

- R:BEAM (coming from a DCCT) sampled at the same time as RS scope data can be used to calibrate this integrated signal.
- Did not set the zero-chromaticity settings for this experiment

🛟 Fermilab

Calibrating A+B Signal

As a sanity check, integrated A + B should follow R:BEAM

- Vertical stripline was connected to CH1 and CH2
- Horizontal stripline was connected to CH3 and CH4

‡ Fermilab

A+B Signal (Head and Tail Definitions)

Head and Tail of the beam can be defined with A + B signal

- Head is -1σ of bunch profile sigma centered at the bunch centroid
- Tail is $+1\sigma$ of bunch profile sigma centered at the bunch centroid

‡ Fermilab

Calibrate (A-B)/(A+B) Signal (Pending)

To calibrate $\frac{A-B}{A+B}$ (transverse displacement), we would need a known transverse displacement maybe through a 3-bump and BPM reading close to stripline

- We don't know the order of magnitude of these oscillations
- Stroboscopic data can be taken around maximum tail excursions (more on this later)
- Head and tail are defined to be -1σ and $+1\sigma$ from bunch profile

🚰 Fermilab

FFT of A-B

FFT-ing A - B should give us the oscillation of the collective motion

- Each bin in oscilloscope can be FFT-ed against pseudoturns.
- Given that we're sampling every 4 turns the tune range goes up to 0.125.
- Larger frequencies will be reflected on the FFT range (Aliasing correction)

‡ Fermilab

FFT of A-B (Qualitative observation other harmonics)

Work is ongoing to analyze different harmonics in A - B. For now, I've only looked at the main one (harmonic with largest amplitude).

‡ Fermilab

FFT OF A - B

Static Tune Scan

Vary the nominal horizontal and vertical tune, while recording stripline data and R:BEAM data, in order to calculate beam survival ratio.

- Two initial intensities: 1.5e11 particles per bunch and 2.7 ppb
- Transverse dampers were ON for these experiments

辈 Fermilab

Static Tune Scan

Vary the nominal horizontal and vertical tune, while recording stripline data and R:BEAM data, in order to calculate beam survival ratio.

- Two initial intensities: 1.5e11 particles per bunch and 2.7 ppb
- Transverse dampers were ON for these experiments

Static Tune Scan (Important Parameters)

Parameter	Notation	Value	Unit
Circumference	C	3319	m
Momentum	p	8.835	${ m GeV/c}$
RF Frequency	f_{rf}	2.5	MHz
RF Voltage	V_{rf}	60	kV
Revolution Frequency	f_0	89.9	kHz
Harmonic Number	h	588	
Synchrotron Tune	Q_s	0.0005	
Slip Factor	η	-8.6×10^{-3}	
Horizontal Chromaticity	C_x	0	
Vertical Chromaticity	C_y	0	
95% Normalized Emittance	$\varepsilon_{n,95\%}$	15	$\pi \text{ mm mrad}$
Bunch Length	$2\sigma_l$	15	m
Space charge $q = \frac{\Delta Q_{sc}}{Q_s}$	Wake parar	e meter w =	$\frac{N_p r_0 R_0 W_0}{4\pi\gamma\beta^2 Q_\beta Q_s}$

Burov, A. (2019). Convective instabilities of bunched beams with space charge. Phys. Rev. Accel. Beams, 22, 034202.

‡Fermilab

Static Tune Scan (Important Parameters)

The Recycler can be assumed as one big broadband resonator

Space charge
parameter
$$q = -\frac{\Delta Q_{sc}}{Q_s}$$
 $N_p = 1.5 \times 10^{11} \, ppb$ $\rightarrow q \approx 10$
 $N_p = 2.7 \times 10^{11} \, ppb$ Wake parameter
Assuming
proadband resonator
vake function) $w = \frac{N_p r_0 R_0 W_0}{4\pi \gamma \beta^2 Q_\beta Q_s}$ $N_p = 1.5 \times 10^{11} \, ppb$ $\rightarrow q \approx 15$ Wake parameter
Assuming
proadband resonator
vake function) $w = \frac{N_p r_0 R_0 W_0}{4\pi \gamma \beta^2 Q_\beta Q_s}$ $N_p = 1.5 \times 10^{11} \, ppb$ $\rightarrow w \approx 30$ $W_0 = \frac{R_s k_r^2 c}{\bar{k} Q_r}$ $R_s \approx 1 \, M\Omega/m$
 $k_r = \frac{\omega_r}{c} \approx 10 \, m^{-1}$
 $Q_r \approx 1$ $N_p = 2.7 \times 10^{11} \, ppb$ $\rightarrow w \approx 60$ Burov, A. (2019). Convective instabilities of bunched beams with space charge. Phys. Rev. Accel. Beams, 22, 034202.August A Kourdang M J (2016) Estimation the Transverse Impedance in the Fermilab Becycler. In 7th

- B
- Ainsworth, R., Adamson, P., Burov, A., Kourbanis, I., & Yang, M. J. (2016). ESTIM International Particle Accelerator Conference (pp. MOPOY011).
- Burov, Alexey, and Zolkin, Timofey. TMCI with Resonator Wakes. United States: N. p., 2018. Web. doi:10.2172/1480111.
- S.Y. Zhang. CALCULATION OF INCOHERENT SPACE CHARGE TUNE SPREAD. tech. rep. Brookhaven National Laboratory, 1996. url: https:// technotes.bnl.gov/PDF? publicationId=30778.

辈 Fermilab

Static Tune Scan

We varied the nominal horizontal tune and looked at the frequency of the largest harmonic in the FFT data

- Had to correct for aliasing given that we were triggering every 4 turns
- Largest harmonic follows the horizontal tune (frequency of collective instability?)

Static Tune Scan

We varied the nominal horizontal tune and looked at the frequency of the largest harmonic in the FFT data

- Had to correct for aliasing given that we were triggering every 4 turns
- Largest harmonic follows the horizontal tune (frequency of collective instability?)

Static Tune Scan (Growth Rates)

Another quantity we can extract is the growth rate τ^{-1} , i.e., exp $[t \tau^{-1}]$

- Calculated envelopes following MaryKate's method with Hilbert transform
- Nominal $Q_x = 25.45$ and $Q_y = 24.455$

Static Tune Scan (Growth Rates)

Another quantity we can extract is the growth rate τ^{-1} , i.e., exp $[t \tau^{-1}]$

- Calculated envelopes following MaryKate's method with Hilbert transform
- Nominal $Q_x = 25.39$ and $Q_y = 24.445$

Static Tune Scan (Growth Rates)

There was a correlation between growth rates and the horizontal tune.

‡ Fermilab

Static Tune Scan (Head, Tail and Centroid)

Static Tune Scan (Tail-Head Amplification)

Tail-Head amplification factor calculated at the largest tail amplitudes remain constant as a function of horizontal tune

🛟 Fermilab

Static Tune Scan (Centroid-Head Amplification)

Centroid-Head amplification factor calculated at the largest centroid amplitudes remain constant as a function of horizontal tune

‡ Fermilab

‡ Fermilab

Conclusions and future work

- We performed a study on collective instabilities in the Recycler Ring. Analysis of data is still ongoing.
- We see a collective instability manifest in the horizontal plane.
- We see a collective instability whose frequency shows a one-to-one correlation with the horizontal tune.
- We see a collective instability whose growth rate scales down with the horizontal tune. No correlation with the vertical tune.
- We see a collective instability dominated by centroid and tail motion. With maximum tail and centroid amplification factors of around 5-10.
- More simulation work, while comparing to theory, has to be done in order to better understand this experimental data
- Look at damper settings against growth rates and amplification factors
 - Alexey Burov. (2018). Transverse Instabilities of a Bunch with Space Charge, Wake and Feedback.

🌫 Fermilab

• Calibrate $\frac{A-B}{A+B}$ to get an estimate of the transverse excursions in meters.

Wake amplitude [A.U.] vs. Position [m]

‡ Fermilab