

Final Search for Short-Baseline Neutrino Oscillations with the PROSPECT-I Reactor Antineutrino Detector

Manoa Andriamirado Illinois Institute of Technology On behalf of the PROSPECT Collaboration

Neutrinos

- Neutrinos are produced everywhere:
 - Different flavors as neutrinos or antineutrinos.
- Fermilab Booster Neutrino Beam produces mostly muon flavor (anti)neutrinos in the GeV regime.
 - Small contamination of electron (anti)neutrinos.
- Reactor antineutrinos:
 - MeV regime.
 - Monosource of electron antineutrinos.

Wine & Cheese Seminar

Reactor Antineutrinos Achievements

First detection of $\nu_{\rm e}$ by Cowan & Reines.

First observation of neutrino oscillation from reactor by

PRL 90. 021802 (2003)

Measurement of Θ_{13} by Daya Bay.

Recent results are shown for precision and emphasis

Neutrinos from Reactor

- Fission isotopes bombarded with neutrons and produces neutron-rich daugthers:
 - Beta decay of unstable produces ~ 6 antineutrinos/fission.
- 99% of antineutrinos in nuclear reactor are produced by fissions in ${}^{235}\text{U}$, ${}^{238}\text{U}$, ${}^{239}\text{Pu}$, ${}^{241}\text{Pu}$.
 - Highly-Enriched Uranium (HEU) only burns ²³⁵U.
 - Low-Enriched Uranium (LEU) is a mixture of isotopes.

Prediction of Antineutrino Spectrum

Ab-initio/Summation:

- Summation of all β -branches of all fission products using database.
- Huge uncertainty in the database: rare isotopes/beta-branches ... back then

Prediction of Antineutrino Spectrum

Ab-initio/Summation:

- Summation of all β-branches of all fission products using database.
- Huge uncertainty in the database: rare isotopes/beta-branches ... back then

Conversion:

- Measure beta spectra then convert into ν_{e} using 'virtual beta branches'.
- Legacy dataset from the 80s.
- Claimed smaller error than ab-initio ... back then

Wine & Cheese Seminar

Reactor Antineutrino Anomaly

Re-evaluation of the antineutrino spectrum:

- Th. A. Mueller *et al.*, *PRC 83*, *054615 (2011)*: Combine summation and conversion methods.
- Huber, *PRC 84, 024617 (2011)*: %-level correction factor in the conversion.

Huber-Mueller model is used as benchmark for all reactor experiments.

- 5.7% flux deficit: Reactor Antineutrino Anomaly.
- $\sim 3\sigma$ tension with previous experiments.

Reactor Antineutrino Anomaly

What could be the origin of this deficit?

- Miscalculation of the flux prediction?
- Could this be an eV-scale sterile neutrino oscillation at short-baseline ('3+1' model)?

Wine & Cheese Seminar

Other Sterile Neutrino Hints

LSND/MiniBooNE anomaly:

- Excess of electron (anti)neutrinos in muon (anti)neutrino beam.
 - Significant of $\sim 6\sigma$.
 - Also suggests 3+1 eV-scale sterile neutrino oscillations?

- Same L/E.
- Different energy, beam and detector systematics.
- Different event signatures, backgrounds.

Beam Excess

17.5

15

12.5

10 7.5

2.5

Wine & Cheese Seminar

Beam Excess

 $p(\overline{v}_{\mu} \to \overline{v}_{e}, e^{\dagger})n$

(v e⁺)n

other

Other Sterile Neutrino Hints

Gallium anomaly:

- Deficit of electron neutrinos from radioactive sources in Gallium based detectors:
 - GALLEX and SAGE experiments.
 - Also suggests 3+1 eV-scale sterile neutrino oscillations?

 $u_e \text{ Sources:}$ $e^- + {}^{51}\text{Cr} \rightarrow {}^{51}\text{V} + \nu_e$ $e^- + {}^{37}\text{Ar} \rightarrow {}^{37}\text{Cl} + \nu_e$

The Reactor Antineutrino Anomaly is fading:

- Daya Bay fuel evolution measurement suggests overprediction of ²³⁵U flux, *PRL 118, 251801 (2017)*.
- New fission beta measurement suggests lower ${}^{235}\text{U}$ is needed *PRD 104, L071301 (2021)*
- Ab-initio prediction shows reduced deficit with improved beta data, *PRL 123, 022502 (2019)*
- Beta conversion unable to predict neutrino spectrum:

The Reactor Antineutrino Anomaly is fading:

 Many SBL reactor oscillation experiments have ruled out much of 'sterile neutrino hypothesis' space: DANSS, NEOS, PROSPECT, STEREO.

Wine & Cheese Seminar

ILLINOIS INSTITUTE

The LSND/MiniBooNE anomaly is still present:

- MicroBooNE: MiniBooNE's excess doesn't seem ν_e -dominated but many potential photon and e⁺e⁻ channels remain unexplored.
- LSND anomaly still has not been directly experimentally verified (JSNS² is working here!)

Wine & Cheese Seminar

The Neutrino-4 Experiment

Reactor antineutrino experiment deployed at SM-3 Dimitrovgrad, Russia

- Non-zero oscillation $(\sin^2(2\Theta_{14}), \Delta m_{14}^2) = (0.36, 7.3), \text{ at } ~2.9\sigma.$
 - Consistent with the newly strengthen Gallium Anomaly.

- HEU reactor operating at 90 MW.
- Movable detector L \in [6.4, 11.9 m] (23 cm step).

Notes on Neutrino-4 results:

- arXiv:2006.13147
- PLB 816, 136214 (2021)
- JETP Lett. 112, 452 (2020)

5m14, eV2

Current tension: Reactor

- The gallium anomaly and Neutrino-4 seems mostly ruled out by other SBL reactor measurements.
- If the Gallium anomaly is caused by electron-flavor disappearance, then how can the electron-flavor Reactor Anomaly be 'fading away'?

Current tension: Accelerator

LSND/MiniBooNE anomaly:

- No excess seen by the MicroBooNE experiment.
- For a 3+1 model, combined mu- and e-flavor disappearance searches rule out the suggested mu-e oscillation space.

Current tension - Summary

Wine & Cheese Seminar

Going Forward

- Vanilla 3+1 oscillation from a single additional sterile neutrino cannot be the full solution.
- Around/after Snowmass 2022, the community has gravitated towards more diverse, potentially interlocking explanations:
 - 3+1 ... plus more: decoherence, decays, NSI, etc.
 - Neutrino couplings to hidden sector particles
 - Conventional explanations
 - Some combination!

Going Forward

<u>1 - Short-Baseline Neutrino</u>

- Direct MiniBooNE test.
- Access to rich hidden sector in > GeV beam.
- Two-beam osc capabilities.

<u>2 - DUNE</u>

- Highest $\nu/{\rm BSM}$ flux.
- High beam energy.
- PRISM ND concept.

<u>3 - IceCube</u>

- Probe non-standard matter effects.
- Very high energy ν 's also accessible

All experiments can contribute to the resolution of the puzzle. B_{L}

<u>6 - JSNS²</u>

- Direct LSND test.
- Access to rich 'lowmass' hidden sector.
- Probe LFV models.

5 - Reactor

- Pure e-flavor.
- Low (MeV) ν energies.
- Pure probe of vacuum oscillations.

<u>4 - Sources</u>

- Direct Gallium Anomaly Test.
- Pure e-flavor.
- Lowest ν energy.

B. Littlejohn: summarizing Snowmass22 21 NF02 Report and Whitepaper.

The Precision Reactor Oscillation and SPECTrum Experiment $\overline{}$

Wine & Cheese Seminar

ILLINOIS INSTITU

Experimental layout

Scientific goals:

- Search for sterile neutrino oscillations,
- Precise measurement of the ²³⁵U antineutrino spectrum.

Strategy:

- Deployment at HFIR facility, Oak Ridge, TN.
- Proximity of the reactor, baseline < 10 m.
- High statistics for precision measurement.

Challenges:

- Minimal overburden.
- Backgrounds: cosmogenic fast neutrons and reactor gammas.

Wine & Cheese Seminar

High Flux Isotope Reactor (HFIR)

- 85 MW Highly-Enriched Uranium reactor
 - >99% of ν from ²³⁵U.
- 24-day cycles:
 - 46% Reactor on
 - 54% Reactor off
 - No isotopic evolution.
- Compact cylindrical core: 0.2m radius, 0.5m height
 - Ideal to probe high frequency oscillation.

PROSPECT Detector

- Deployed at the vicinity 7-9m of HFIR reactor.
- Detector is filled with 4-tons of 6Li-doped liquid scintillator
- Grid of 11x14 (154) optically separated segments:
 - Relative measurement for neutrino oscillations.
 - Fiducialization.
 - Topology cut.
- 3D position reconstruction (X,Y,Z) from double-ended PMT readout.

PROSPECT Detector Component

Wine & Cheese Seminar

(b)

Detector Performance

Radioactive sources deployed throughout the detector for calibration:

- Gammas sources (¹³⁷Cs, ⁶⁰Co, ²²Na) for single segment response measurement.
- ${}^{12}B$ for β -energy scale calibration.
- ²²⁷Ac dissolved in liquid scintillator:
 - 219 Rn- 215 Po (α - α) provides a proxy for relative mass per cell measurement, 2.2% variation.
 - Crucial for neutrino oscillation

Wine & Cheese Seminal

PROSPECT Installation

28

Antineutrino detection

- Positron annihilates promptly and gives an estimate of the ν_e energy.
- Delayed neutron capture on 6Li tags IBD events.
- Correlated coincident signals!!

- Developed ⁶LiLS with capabilities to distinguish particles through scintillation timing profile.
- Electronic recoil emit light faster than nuclear recoil.

- Pulse Shape Discrimination quantifies the scintillation shape, Qtail/Qfull.
- PSD adds powerful information to identify IBD and reject backgrounds.

Data

PROSPECT detector took data from March 5 to October 6, 2018

- 105 days reactor-on.
- 78 days reactor-off.
- 8 days of calibration.
- Discard candidates from 36 fiducial segments experiencing PMT current instabilities.
- Average of 529 IBD per day.
- IBD rate follow $1/r^2$ distribution.

Wine & Cheese Seminar

IBD Signal and Background

 $\begin{array}{l} {\rm Reactor \ Off \ Background:} \\ 1) \ {\rm Multi-neutron \ events,} \\ {}^1{\rm H}({\rm n},\gamma)^2{\rm H \ peak \ at \ 2 \ MeV.} \end{array}$

- 2) Fast neutron events, ${}^{12}C(n,n'){}^{12}C^*$ peak at 4.5 MeV from the first excited state of ${}^{12}C$:
 - Outgoing n' can leak into the neighboring segments.

Results and Highlights

Small experiment with successful run and outsized physics impact.

Joint analysis with the final PROSPECT, STEREO, and DYB data is underway, stay tuned!! 32

RxOff RxOn

What's new in the final PROSPECT-I analyses

- Over the course of operation, a number of PMTs displayed current instabilities: •
 - LiLS ingressed into the PMT housing, and interacted with the PMT circuitry.
 - $\sim 20\%$ of the total segment turned off at the end.
- Maximize the PROSPECT-I data set: •
 - Data splitting (DS),

Wine & Cheese Seminar

Dataset Optimization: Data Splitting

- Split the dataset into distinct periods:
 - Maximize number of live segments in each period.
- Splitting criteria:
 - Each period must contain one full RxOn cycle.
 - Each period should start immediately after a new calibration campaign.
 - All periods should have RxOff data before and after each corresponding RxOn cycle.

Dataset Optimization: SEER

- Only one PMT experience current instabilities for some segments (SE-segments):
 - Lack of energy and z-position reconstruction capabilities.
- Provides a good handle for background suppression:
 - PSD reconstruction from SE-segments is still good.

3	0	ri	0	А	5	
-	C		U	u	0	

Blind Segmer	nt
--------------	----

DE Segment

140	141	142	143	144	145	146	147	148	149	150	151	152	153
126	127	128	129	130	131	132	133	134	135	136	137	138	139
112	113	114	115	116	117	118	119	120	121	122	123	124	125
98	99	100	101	102	103	104	105	106	107	108	109	110	111
84	85	86	87	88	89	90	91	92	93	94	95	96	97
70	71	72	73	74	75	76	77	78	79	80	81	82	83
56	57	58	59	60	61	62	63	64	65	66	67	68	69
42	43	44	45	46	47	48	49	50	51	52	53	54	55
28	29	30	31	32	33	34	35	36	37	38	39	40	41
14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Wine & Cheese Seminar

Detector configuration

- Previous analysis did not make use of single-ended segments:
 - This new method uses all the data collected by the PROSPECT-I detector.
- 5 detector configurations with their own response:
 - Each period is an independent measurement with correlated systematics.
 - Previous results were using Period 5's configuration (treat SE-segments as blind).

ILLINOIS INSTIT

OF TECHNOLOGY

DE Segment

SE Segment

Final Optimized Dataset

5000

4000

3000

2000

1000

0

2

Counts/200keV

Previous analysis, Phys. Rev. D 103, 032001, using only DE-segments.

- 50,560 IBD signal. ٠
- 1.37 S/B ratio. ٠

Current analysis, arXiv:2406.10408 using DS&SEER.

6

- Reactor On (Total)

- Reactor Off, Scaled (Total) IBD Candidates (Total)

8 10 12 Prompt Energy [MeV]

12

- 61,029 IBD signal. ٠
- 3.90 S/B ratio. •

Final Optimized Dataset

ILLINOIS INSTITUTE

New ²³⁵U Antineutrino Prompt Spectrum Measurement

• Combine segments' spectra into one.

PRSPECT₇

- Same treatment for period.
- Produced a final antineutrino prompt spectrum measurement with the new dataset.
 - Spectra are compatible to each other.
 - Minimimal impact from segment status of each period.
 - Minor impact from difference in detector response.

Wine & Cheese Seminar

Oscillation Analysis Strategy

- Combine spectra from segments into baseline.
 - 6 baseline bins x 33 energy bins x 5 periods.

Oscillation Analysis Strategy

- Combine spectra from segments into baseline.
 - 6 baseline bins x 33 energy bins x 5 periods.
- Search for spectral distortion by comparing each baseline to the detector integrated average (flux independent).

Data Visualization

- Challenging to visualize the final data set in the full analysis binning configuration.
- Summarize the data in $L/\langle E_{y} \rangle$ format.
- No obvious sign of oscillation in the measured dataset.

Oscillation Analysis Strategy

- Use Chisquare test to quantitatively assess the parameter fitting the dataset:
 - Combined Neyman-Pearson to minimize bias from low statistics bins, *NIMA 961, P163677 (2020)*.
- Remove reactor model dependency with 'relative spectral ratio' analysis approach illustrated 2 slides back :
 - Correlated statistical uncertainty.

$$\chi^2_{min}(\sin^2 2 heta,\Delta m^2)=\Delta^T V_{Tot}^{-1}\Delta$$

 $\Delta_{l,e} = O_{l,e} - O_e rac{P_{l,e}}{P_e}$

 $O_{l,e}$: Observed $P_{l,e}$: Prediction V: Stat + Sys uncertainty

Best-fit point $(\sin^2 2\theta, \Delta m^2) = (0.42, 15.2)$.

 10^{3}

10²

10

1

10⁻¹

10⁻²

 10^{-3}

 $\Delta \chi^2$ Map

Results

- $\Delta \chi^2$ of 3.56 wrt to the null hypothesis. Ξ Frequentist tests performed at a few key grid points: 10 Data is highly consistent with null-oscillation toys (p=0.73). Toys at Neutrino-4 best-fit point provide $\Delta \chi^2$ far below that observed in the data. Toys loys Null Toy:(0, 0)N4 BF Toy: (0.36, 7.3) 10 L 10-**10**⁻¹ $\sin^2 2\theta_{14}^{T}$ $\frac{35}{\Delta\chi^2 = \chi^2_{true} - \chi^2_{min}}$ 10 15 20 25 10 15 20 $\Delta \chi^2 = \chi^2 - \chi^2$ 25 30 Wine & Cheese Seminar 44

Results: Exclusion Region

- Given the compatibility of the data with null hypothesis, we use the Gaussian CLs method to draw an exclusion contour.
- Claimed observation of short-baseline oscillation from the Neutrino-4 experiment is ruled out at more than 5σ .
- Exclude all phase-space for Δm^2 below 10 eV² suggested by the recently strengthened Gallium Anomaly at 95% CL.

Global Context

ILLINOIS INSTITUTE

- New PROSPECT limits lead short-baseline reactor efforts for most Δm^2 values above 3 eV².
- Reactor-based Θ_{14} limits are much stronger than other experiment sectors over most of the pictured phase space

PROSPECT-II Motivations: Anomaly Resolution

- What's next ?
- Reactor experiments play central piece in an integrated global effort to understand the remaining anomalies: LSND/MiniBooNE and Gallium Anomaly.
 - Pure source of MeV electron antineutrino disappearance.
- Upgrade from few reactor antineutrino experiments: TAO, Neutrino-4+, and **PROSEPCT-II**.
 - PROSPECT-II will be the only US-based reactor antineutrino experiment.
 - Do we want to rely on Neutrino-4+ to be the only next-gen SBL effort probing higher Δm^2 regions?

ILLINOIS INS

OF TECHNOLOGY

Other PROSPECT-II Motivations

- SBL ν_e disappearance would also impacts LBL oscillation signatures, like DUNE!:
 - Independent experiments constraining Θ_{14} and $\Theta_{24} \leq 5^{\circ}$ will extinguish potential parameter degeneracies for DUNE, JHEP 1511 (2015) 039.
- Precise measurement of the ²³⁵U spectrum to determine the isotopic dependence of the bump.
- Measurement of the ²³⁵U flux to increase the reliability of the global flux picture.
- Benefits of a IBD re-deployable detector:
 - Application demonstrations: Reactor monitoring, and nuclear non-proliferation.
 - BSM searches at reactor and non-reactor sources (SNS).

events / 0.25 GeV

PROSPECT-II Detector

Improving stability and performance of the detector to achieve these goals.

PROSPECT-II Detector

Match the initial P-I Physics goals while improving stability and performance of the detector.

- Double-layer seal design.

Wine & Cheese Seminar

PROSPECT-II Detector

Match the initial P-I Physics goals while improving stability and performance of the detector.

10 12

y-segment • 800

PROSPECT-II R&D Retiring Risks

- External calibration source tubes along the perimeter of the segment array.
- Use PROSPECT-I data to simulate "external-like" source deployment.
- Performance of external calibration is comparable to internal calibration

PROSPECT

PROSPECT-II R&D Milestones

Stage 1 (Current):

- Design and build the inner containment vessel.
- Engineering Test: full fill with complete liquid control/ monitoring systems.

Stage 2:

- Build optical grid and PMT support structure, and other systems.
- Mechanically integrate the full PROSPECT-II detector package.
- Small prototype LiLS test.

Stage 3:

- Procure large batch of production LiLS.
- Fill the detector.

PROSPECT-II Deployment

Deployment at an HEU and LEU reactors:

• Increase in IBD statistics: Order of magnitude larger than P-II at HFIR

	Parameter	P1	P1 P2 at HFIR		
	Power (MW_{th})	8	3000	es.	
Reactor	Cylinder Size $(d \times h, m^2)$	0.4	3×3		
	Fuel	H	LEU		
	Cycle Length	24	4 d	1.5 y	
	Segmentation	11×14	11×	(14	8
	Segment Area (cm^2)	14.5×14.5	$14.5 \times$	(14.5	
	Segment Length (m)	1.17	1.4	45	
Detector	Target Mass (ton)	~ 4.0	4.	8	
	Light collection (PE/MeV)	~ 380	50	00	
	Detection Efficiency	$\sim 40\%$	40	%	
	Average Baseline (m)	7.9	7.9	25	
	Reactor-On Days (d)	105	336	548	
Exposure	Reactor-Off Days (d)	78	360	61	
	Signal:Background	1.4	4.3	19.3	
	IBD Statistics (N_{IBD})	50560	3.74×10^5	2.72×10^6	
	Effective Statistics (N_{eff})	15195	2.08×10^5	1.79×10^6	

Wine & Cheese Seminar

PROSPECT-II Projected Sensitivity

- Deployment at HFIR will address the remaining interesting oscillation phase space.
 - Address Neutrino-4 allowed sterile neutrino observation at high mass splitting.
 - Cover the Gallium Anomaly below $^{\sim}15 \text{ eV}^2$.
 - Constraint the mixing angle Θ_{14} in between 1-10 eV² for the long baseline CP violation interpretation.
 - Unmatched performance below 20 eV^2 compared to accelerator based experiment.
 - P-II exceed P-I sensitivity by a factor of 3-5.
- Flux: measure 235 U flux from HFIR to ${<}2\%$.

PROSPECT-II Broadened Physics Scope

Combined analysis from HEU and LEU deployments enhances PROSPECT-II physics goals:

- Oscillation sensitivity extended to lower Δm^2 from longer baseline
- Spectrum measurement at different reactor gives powerful probe of spectral isotopic dependence.
- Flux measurements at both reactors yield unambiguous measurement of the isotopic antineutrino yield.

Summary

- We have set world-leading limits on sterile neutrino oscillations with the final PROSPECT-I dataset.:
 - Neutrino-4 BF ruled out at $> 5\sigma$.
 - Gallium Anomaly allowed $\Delta m^2 < 10 \text{ eV}^2$ rule out at 95% C.L.
 - Leads global SBL electron-flavor disappearance limits over most of the 3-10 eV^2 phase space.
- A diversity of approaches is required to unravel today's complex SBL anomaly space:
 - The reactor sector, and PROSPECT-II have a unique role to play in a complimentary global program.
- The collaboration is in the first step of a three-phase program towards the deployment of an upgraded PROSPECT-II detector.

THANK YOU!!!!

Wine & Cheese Seminar

ILLINOIS INSTITUT

OF TECHNOLOGY

Backup Slides

ILLINOIS INSTITUTE

PRL 131. 021802 (2023)

New ²³⁵U Antineutrino Spectrum Measurement

- Produced the final antineutrino spectrum measurement:
 - Still observed a distortion around 6 MeV.
- New constraints on the isotopic nature of data-model disagreement
 - 235 U is the sole contributor to the bump disfavored at 2.2 σ .

Toy validation

- Toys generated with statistical fluctuation.
- BF point of the null toys are spread across the dm2:
 - Small fluctuation in the null prediction corresponds to a non-zero oscillation.
- BF point of the oscillated toys are within the allowed region:
 - Contains the true point.

Response Matrix

• Reponse of segment 45 across different period:

True Antinuetrino Energy [2.5-3]MeV

- Degradation of the response as neighboring segments are turning off.
 - Leaking prominent at low and high energy.

True Antinuetrino Energy [4.5-5]MeV

Background Stability

- Cosmogenic backgrounds vary with atmosphere conditions.
- Check the consistency between RxOff backgrounds:
 - Consistent rate and spectrum observed.

Pulse Stabilities

Wine & Cheese Seminar

Absolute L/E

Wine & Cheese Seminar

Absolute L/E

Case	Description	Precision on σ_i (%)						
	Description	²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu		
-	Existing Global Data	1.3	26.4	25.2	-	42.6		
1	HEU + LEU	1.6	11.1	4.6	-	10.5		
3	HEU + LEU + RG-MOX	1.6	9.7	2.2	-	3.4		
2	HEU + LEU + WG-MOX	1.6	9.9	2.5	-	3.6		
4	HEU + LEU + Fast	1.6	10.9	4.6	27.2	10.3		
5	All	1.6	9.5	2.1	23.6	3.3		
6	All, Uncorrelated	1.5	14.3	2.1	36.2	4.2		
-	Model Uncertainty [66]	2.1	8.2	2.5	-	2.2		

Energy Smearing of N-4

Wine & Cheese Seminar

67