
Overview of hls4ml
hls4ml is a pipeline used to convert machine learning models 
to a form that can be run on a field-programmable gate array 
(FPGA) or inscribed into an application-specific integrated 
circuit (ASIC). This has strong applications in high-energy 
physics, where detector triggers require latency on the scale 
of nanoseconds, but would benefit greatly from the power of 
machine learning.

The graph-based input data for the surrogate model is best 
handled by a graph neural network (GNN). The network takes 
data in the form of graphs (represented with an adjacency list), 
and runs them through two GATv2 graph attention networks 
(arXiv:2105.14491) and two message-passing graph convolution 
layers, before pooling all edge and node results with global 
features. A final neural network layer allows all three types of 
data to inform a prediction. 

Modeling Networks 
with Graphs

 A typical workflow 
to translate a 
model into a FPGA 
implementation 
using hls4ml (J. 
Duarte et al 2018 
JINST 13 P07027)

The structure of the graph neural network. Node and edge features are passed 
through graph attention networks and message-passing layers

The wa-hls4ml surrogate model is capable of simulating the 
resource consumption of the final synthesis results within a 
reasonable margin. On 3 out of 6 tested target regression 
features, the GNN has a lower RMS error rate than a standard 
multi-layer perceptron on the same collection of heterogeneous 
data (containing 2-layer and 3-layer input models) The GNN 
structure is able to predict DSP unit usage with a significantly 
lower RMS error. Additionally, the GNN is not limited by graph 
architectures, allowing it to extrapolate to unseen architectures. 
More data is needed on this extrapolation performance.

The structure of a typical 
neural network can be 
represented in the form of a 
directed graph. Each node 
represents a layer of the 
network, and each edge 
represents a feedforward 
connection. 

This allows for modeling 
complex architectures, 
including skip connections 
and recurrent networks. 
Node features (e.g. number 
of connections in the layer) 
and edge features (e.g. 
sparsity of the connection) 
can both be included.

Results

wa-hls4ml: A GNN Surrogate Model for hls4ml
Dennis Plotnikov1 2, Benjamin Hawks1, and Nhan V. Tran1

1 Fermi National Accelerator Laboratory 2 Johns Hopkins University

Surrogate Modeling
A surrogate model is a time- or resource-efficient model, 
which can be used to get a rough estimate of a more 
sophisticated model.

For hls4ml, converting a given input network could take on the 
order of days. After that, the result could be unuseable, either 
due to a failed synthesis, or due to the resource consumption 
being untenable for the application.

A simple two-hidden-layer feedforward neural 
network, represented as a three node directed 
graph. 

128 25632

Graph 
Form

Input Hidden 1 Hidden 2

Residual histograms comparing the GNN (cyan) to a control multi-layer perceptron (yellow). On 
interval, LUT, and DSP prediction, the GNN is able to attain a lower RMSE even on the same data, 
showing one advantage of the graph representation

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 
with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. 

This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development 
for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

FERMILAB-POSTER-24-0198-STUDENT

128

{
32 

{
256

{

This work was supported in part by National Science Foundation (NSF) awards CNS-1730158, ACI-1540112, ACI-1541349, OAC-1826967, OAC-2112167, CNS-2100237, CNS-2120019, the University of California Office of the President, and 
the University of California San Diego's California Institute for Telecommunications and Information Technology/Qualcomm Institute. Thanks to CENIC for the 100Gbps networks.

Node 
Features

Node 
Features

Node 
Features

Node 
Features

Graph-izeInput

Nodes

Edges

Global

Edge Features
NN Layer

(1 hidden layer, 
ELU activation)

Out

Edge Attention

NN
Layer

Edge Attention

Message Passing Layer #1
(MultiAggregation with 

additive and multiplicative)

NN Layer
(1 hidden layer, 
ELU activation)

MultiAggregation 
Pooling with 
Additive and 
Multiplicative

Graph 
Normalization

Graph
Attention
Network 
(GATv2)
Layer #2

Message Passing Layer #2
(Multi Aggregation with 

additive and multiplicative)

Trainable Layers

Non-Trainable Layers

Data Processing

Graph
Attention 
Network 
(GATv2)
Layer #1

Global Additive 
Pooling

Pooled Features

Linear layer 
with 

LeakyRELU 
activation

Add to every node

NN Layer
(1 hidden 
layer, ELU 
activation)

Linear layer 
with 

LeakyReLU 
activation

Linear 
layer 


