
Overview of hls4ml
hls4ml is a pipeline used to convert machine learning models 
to a form that can be run on a field-programmable gate array 
(FPGA) or inscribed into an application-specific integrated 
circuit (ASIC). This has strong applications in high-energy 
physics, where detector triggers require latency on the scale 
of nanoseconds, but would benefit greatly from the power of 
machine learning.

The graph-based input data for the surrogate model is best 
handled by a graph neural network (GNN). The network takes 
data in the form of graphs (represented with an adjacency list), 
and runs them through two GATv2 graph attention networks 
(arXiv:2105.14491) and two message-passing graph convolution 
layers, before pooling all edge and node results with global 
features. A final neural network layer allows all three types of 
data to inform a prediction. 

Modeling Networks 
with Graphs

 A typical workflow 
to translate a 
model into a FPGA 
implementation 
using hls4ml (J. 
Duarte et al 2018 
JINST 13 P07027)

The structure of the graph neural network. Node and edge features are passed 
through graph attention networks and message-passing layers

The wa-hls4ml surrogate model is capable of simulating the 
resource consumption of the final synthesis results within a 
reasonable margin. On 3 out of 6 tested target regression 
features, the GNN has a lower RMS error rate than a standard 
multi-layer perceptron on the same collection of heterogeneous 
data (containing 2-layer and 3-layer input models) The GNN 
structure is able to predict DSP unit usage with a significantly 
lower RMS error. Additionally, the GNN is not limited by graph 
architectures, allowing it to extrapolate to unseen architectures. 
More data is needed on this extrapolation performance.

The structure of a typical 
neural network can be 
represented in the form of a 
directed graph. Each node 
represents a layer of the 
network, and each edge 
represents a feedforward 
connection. 

This allows for modeling 
complex architectures, 
including skip connections 
and recurrent networks. 
Node features (e.g. number 
of connections in the layer) 
and edge features (e.g. 
sparsity of the connection) 
can both be included.
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Surrogate Modeling
A surrogate model is a time- or resource-efficient model, 
which can be used to get a rough estimate of a more 
sophisticated model.

For hls4ml, converting a given input network could take on the 
order of days. After that, the result could be unuseable, either 
due to a failed synthesis, or due to the resource consumption 
being untenable for the application.

A simple two-hidden-layer feedforward neural 
network, represented as a three node directed 
graph. 
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Residual histograms comparing the GNN (cyan) to a control multi-layer perceptron (yellow). On 
interval, LUT, and DSP prediction, the GNN is able to attain a lower RMSE even on the same data, 
showing one advantage of the graph representation
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