DAQ Management Report

DUNE DAQ Consortium Board - 07.10.24

Alessandro Thea

Overview

- ProtoDUNE Operations
- DUNE-DAQ Developments
- FD Preparation for installation
- ND Ongoing activities

ProtoDUNE Operations

- NP04 completed 10 weeks of beam
 - 2 extra weeks extension wrt initial allocation
 - Last day of beam : Sep 16th
 - 4 weeks of detector stress tests in cold
 - Warm up and monitoring throughout the end of 2024/beginning of 2025
- NP02 Closure ongoing
 - Cooldown and fill expected in November
 - Beam time will be requested for first half of 2025

- DAQ stay collected data at ~15 Hz average trigger rate (2.1 GB/s),
 up to ~40 Hz instantaneous rate (5.7 GB/s)
 - Using 8 datawriter applications writing to SSD storage volumes
 - Limitation overall data rate is bandwidth from readout servers to data storage servers
- DAQ trigger records are ~142 MB in total size
 - ◆ 3 ms readout window for TPC (0.25 ms before trigger, 2.75 ms after)
 - ◆ 5.5 ms total readout window for all other components (2.75 ms before, 2.75 ms after)
 - ► TPC readout (streaming, unbiased): 107 MB
 - "Streaming" (unbiased) PDS readout in APA1: 25 MB
 - "Self-triggered" PDS readout in APAs 2-4: 9 MB
 - ► Trigger Primitives (from TPC, inside trigger record): 1 MB
 - Additional data from CRT, CTB, timing, high-level trigger objects is negligible
- Integration of all external systems (CRT, laser calibration) completed

T.Alves, W.Dallaway, I.Hristova, M.Man, A.Oranday, M.Rigan, P.Plesniak, M.Roda, A.Stucz, D.Vargas

Integration of all external systems (CRT, laser calibration) completed

NP04 Trigger Primitives

A. Oranday, M.Rigan, A.Sctuz, I. Hristova

- In addition, stably collected trigger primitives from collection planes and stored in TP stream files
 - Very high (~3 MHz) total TP rate, ~160 MB/s, due to surface operation
 - ► TP performance very good clearly showing sub-MeV signals
 - ► TP generation on induction planes also demonstrated, but readout on all planes not stable with high (> 1 Hz) trigger rates (well beyond conditions for FD)
 - TPs have proven to be a remarkably good indicator of detector conditions

NP04 Post-beam run plans

- Test software-driven trigger stability and demonstrated running multiple algorithms
 - 'ADCSimpleWindow' algorithm previously tested and working stably

- DAQ performance testing (this week)
 - Focus on testing new readout server (np04-srv-031) with real data
 - Demonstrated running 2 APAs w/ TPG in both v4 and v5
 - Push to running 4 APAs w/ TPG
 - SN readout to local storage (10-100s sample)
 - Can also try to make time for other stress testing that benefits from detector data (e.g. storage server testing)

DUNE DAQ @ NP02

- Integration effort with VD detector systems started long ago, with mixed success
 - Currently bottom CRPs are the only system controlled, synchronised and readout via DUNE-DAQ.
 - Top CRPs and PDS partially/not integrated yet
- Discussed with VD Technical Coordination about NP02 monitoring during purge, cooldown and fill
 - Tentative goal: monitor the entire NP02 via DAQ
 - Likely: monitor BDE + PDS (legacy hardware) and complete integration in parallel
- Other systems
 - Cosmic Ray Taggers: positive first discussion with Grenoble and Bern groups (June)
 - Beam Instrumentation: NP04 BI to be moved to NP02
 - ◆ The Penn Central Trigger Board will provide beam triggers once more

DAQ-Detector integration status

Bottom Drift Electronics integrated with DAQ since '23

- One of the first system transitioning to Ethernet Readout in June '23
- CRP 4 + 5 regularly monitored by BDE experts via DAQ
- Continuous monitoring started in preparation to TCO closure

• Top Drift Electronics

- Preliminary integration tests with timing ('23) and readout ('24) completed.
- No integration for controls yet
- Testing at scale (2 CRPs) and full integration with DUNE-DAQ still pending

PDS

- Integration with target hardware (DAPHNE v3) not started due to production delays
- 2 DAPHNE v3 expected at CERN by end of September
- ► Initial detector PDS monitoring via DAPHNE v2
 - to be swapped for v3 when ready

Overall EHN1 schedule

- Requested DAQ support for VD and HD coldboxes in autumn
 - ▶ Planning ongoing, DAQ hardware likely sufficient after rationalisation of the EHN1 setup

DUNE DAQ Developments

- DAQ development plan heavily affected by operations at ProtoDUNE
 - Significant amount of effort diverted to NP04 readiness and support in the Q2 and Q3
 - But operations offered many highly valuable opportunities to validate the system at scale,
 identify and fix existing issues
- Main developments in 2024 (ongoing)
 - New Configuration System
 - New Run Control
 - New Operational Monitoring infrastructure
 - Appfwk review implementation

New Configuration System - conffwk

G. Crone, E. Flumerfelt, G. Lehmann Miotto

Timeline

- Prototype started in autumn '23
- Proof of concept in v5.0 engineering release (May '24)
- First detector support in v5.1 (July '24)
- Support for NP02 monitoring in v5.2 (October '24)

Key features

- Based on the ATLAS configuration system (OKS+config packages)
- System configuration described as a collection of elements and their relationships via an abstract schema
 - XML schema and data files
- ► Includes a programmatic interface to read/write configurations in C++/Python
 - Data Access Layer DAL
- Provides tools for editing schema and configurations

TDAQ System Description - confmodel & app model

G. Crone, E. Flumerfelt, G. Lehmann Miotto

- Main challenge so far: design of the TDAQ system representation as OKS schema
 - Applications, Controllers, Hosts, FSM, Segments,... descriptions
 - DAQ applications and modules description
 - including handling of large numbers of modules via automatic generation (SmartApplication pattern)
 - Description of detector-readout connectivity
 - DAQ modules settings optimisation
 - Component enabling/disabling
- TDAQ model exercised at NP02
 - CRP4 and 5 routinely readout using this model
- Next steps
 - Testing TDAQ model flexibility and maintainability in operations context
 - and in development context (i.e. regression tests)
 - Prepare specialised tools to for modifying/editing TDAQ configurations

DUNE DAQ Development Lines

New Run Control: Drunc

- Short term goals (DUNE-DAQ v5.2): readiness for NP02 operations
- Development didn't stop over the Summer
 - Made it more DAQ developer-friendly (FSM sequences, connectivity service)
 - Run archiving facilities integrated (ELisA, run registry)
 - Many bugfixes
 - Documentation rewrite
- More features in v5.2
 - User/shifter-friendly (hide more logging, hide/remove expert interactions)
 - Support Integration tests (a.k.a. batch mode)
 - ERS/Opmon integration
 - Timing system integration (maybe)
- Longer term
 - GUI, K8s PM, Session Handler

DUNE DAQ v5.2

Release Coordinator: E.Flumerfelt

Release status/progress

- Consolidation around new configuration and run control systems for NP02 operations
- Recovery of testing infrastructure in v5
- Forward-porting of v4 features and fixes
- Consolidation of many packages
- Good progress over the summer but large number of changes challenging to handle
- ► Target release date : Oct 21st

A. Thea

A. Thea

2.1.0

2.0.0

CoreSW

dpdklibs

fddetdataformats

Far Detector: Installation Schedule

- DAQ Development and
 Procurement schedule driven
 by FD installation schedule
- Swap of the installation order of FD1-HD and FD2-VD completed in June
 - Later start, but shorter installation and fill time of the first module
 - Includes extra caverns delivery and CUC AUP delays

M. Nessi - Sep. DUNE CM

- Installation dates largely stable since then
 - Some clashes between DAQ and detector installation activities need following up
 - as well as a review of dependencies
 - Attempt to increase the contingency between DAQ and detector installation ongoing

Far Detector: DAQ Procurement after Detector Swap

- Reminder: FD installation drives the DAQ procurement schedule
 - "DAQ procures as late as possible"
- Procurement and Production Readiness dates
 - ► Installation of the first module (VD) delayed by ~7 months
 - DAQ PRR schedule updated
 - ◆ Timing, Readout network and DAQ Servers PRR delayed to early 2025 to make use of the extra time for testing and value engineering studies
- Procurement Strategy
 - Procurement plan under taking into account VD shorter installation and cooling schedule, and national funding constraints.

Near Detector: Updates

- New effort: Henry Wallace @ RHUL, also spending time on CCM
- ND DAQ: Being updated to be compatible with v5, work in progress
- Main driver for autumn 2024: ND review process
- Many PDR and FDR processes for ND subsystems
- Goal: DAQ Interface Control Documents (ICDs) completed by ~1 December

Near Detector: ICD updates

- ND-LAr
 - Mature technology for charge readout (=FDR this year)
 - Developing technology for light readout (=PDR this year)
 - Clear path to ICD
- TMS
 - Technology selection recently made (=PDR this year)
 - Sharing information to work out any friction points
 - Path to ICD
- SAND
 - In progress of setting up a meeting

NP02 DAQ Run Coordinator

- The ProtoDUNE DAQ run coordinator role was created in Q1 2024 times support the NP04 operations
- The ProtoDUNE DAQ coordinator
 - Is the point of contact with NP04 Run Coordination and other NP04 subsystems
 - ► Is responsible for the organisation of DAQ expert shifts
 - Is responsible for DAQ experts training
 - It represents the DAQ at weekly NP04 meetings and daily meetings
- W. Ketchum, who has served as DAQ run coordinator for NP04, and previously as DAQ EHN1 integration coordinator, is due to go back to FNAL in April 2025
 - ▶ I would like to take the opportunity to thank Wes for his tireless effort and for the success of the NP04 run.
- The DAQ is looking for a new DAQ Run Coordinator to lead the preparation and the NP02 DAQ operations
 - Please contact me if you have a suggestion for a candidate
- Ideally the new DAQ Run Coordinator should overlap with Wes as much as possible.

Summary

- The NP04 run is now completed
 - ► The DAQ is supporting and participating in a stress test campaign waiting for the LAr to be transferred
- A different set of challenges is expected at NP02
 - First demonstrator at scale of the VD technology
- Focus shifting back to developments for DUNE
 - New configuration system, run control, operational monitoring now available and in use
 - Discussion of 2025 development plans expected to start soon
- Far Detector installation schedule update
 - Procurement plan being reviewed in light of the new timeline and constraints
 - Interactions with other systems during installation being checked for conflicts
- Near Detector DAQ interfaces being updated for the early 2025 detector reviews
- The consortium is looking for a DAQ Run Coordinator for NP02

