

Results from the Neutron Generator Test at ProtoDUNE

PNS & PDS Meeting 8 August 2024

Yashwanth Bezawada (Yash) Junying Huang University of California, Davis

OUTLINE

Pulsed Neutron System DDG Test at ProtoDUNE Clustering Using DBScan Removing Cosmic Backgrounds MC Simulations Comparing Data and Simulations ➢ Conclusions

Neutrons for Calibration

- Argon has a near transparency to neutrons of energy 57 keV due to anti-resonance section
- Can travel ~30 m in natural liquid argon
- Fractional energy loss of 4.8% per scatter for the neutrons above this dip
- But the only experiment performed did not see the antiresonance

Fig. (left) Simulated spread of 57 keV neutrons in the DUNEsize module (work done by J. Wang)

Fig. ARTIE results for the neutron cross section in liquid argon at the anti-resonance dip

 Neutron captures in liquid argon (⁴⁰Ar - 99.6%) release distinct 6.1 MeV gamma ray cascade

$$n + {}^{40}Ar \rightarrow {}^{41}Ar + 6.1 MeV$$

How can we use Neutrons?

Fig. A schematic of the proposed PNS system (Investigating a simplified design) Pulsed Neutron Source (PNS)

Deuterium-Deuterium neutron generator (DDG) produces 2.5 MeV neutrons $^{2}H + ^{2}H \rightarrow ~^{3}He + n + Q(2.5 \, MeV)$

Advantages

- External Deployment: No contamination to liquid Ar
- Adjustable neutron yield, pulse width and pulse rate
- Broad coverage: Neutrons travel long distances in liquid Ar
- Fixed energy deposition: 6.1 MeV gamma cascade can be used as "standard candle"
 - Signal also resembles Supernova Neutrino Burst (SNB) signal, thus acting as a "fake" SNB event trigger
- Frequent calibration runs can be conducted, due to the ease of deployment

Start

DDG Test at ProtoDUNE-SP

DDG (Shielded)

(From left to right) DDG; DDG inside the shielding;

Images Mattia's talk for DD generator operation, Collaboration Meeting Sep 2020)

08/08/2024

CERN Neutrino Platform

DDG Control + DAO

Y. BEZAWADA | PNS & PDS Meeting

DDG Test - Setup

Location of the roof feedthrough

DDG Test – Data Taking

 Data taking was done over 10 days with different trigger modes and neutron intensities

- •Random Trigger Mode:
 - DDG Off: E = 650 V/cm; 2 Hz Trigger Frequency
 - DDG Off: E = 350 V/cm; 5 Hz Trigger Frequency Run 11669
 - DDG On: E = 650 V/cm; 2 Hz Trigger Frequency
 - DDG On: E = 350 V/cm; 5 Hz Trigger Frequency
- Pulsed Trigger Mode (Only for DDG On): Run 11711
 - E = 350 V/cm, 5% duty Cycle, ~175 μs pulse width, ~4 Hz
 - E = 0 V/cm, 5% duty Cycle, ~175 μs pulse width, ~4 Hz

(For more information refer to Mattia's talk on DD generator operation, Collaboration Meeting Sep 2020)

Reconstructing Raw Data

- We are using "protoDUNE_SP_keepup_decoder_reco.fcl" to reconstruct the raw data
- We are using the following Modules:
 - "hitpdune" for extracting hits
 - "reco3d" for extracting spacepoints
 - "dbcluster3d" for clustering spacepoints

# Space point finder	
reco3d: @local::protodunespdata_spacepointsol	.ver
# Hit disambiguation	
hitpdune: @local::pdune_disambigfromsp	
#3d dbscan	
dbcluster: @local::protodunespmc_dbcluster3d	

Fig. Hits from the collection planes (APAs 4, 5, and 6) for an event in the run 11669 (DDG-off).

APA-5 is the nearest to the DD Generator

Spacepoint Clustering Using DBScan 3D

Fig. Y-position vs Zposition plots of the SpacePoints from one event.

- Minimum points per slice is set to 3
- Epsilon (neighborhood radius) is set to 3cm
- Cosmic rays partially removed by a cut on slice size

Size Distribution of the Clusters

Fig. Above plots show the size distribution of size distribution of clusters in one event.

Determining the Slice Size Cutoff

Fig. Slice Size vs Number of Slices Plots

- We use a slice size cutoff of <=13 to remove some cosmics.
- 5000 events included.

08/08/2024

Removing Cosmic Backgrounds

08/08/2024

Y. BEZAWADA | PNS & PDS Meeting

Removing Cosmic Backgrounds

Simulations

- Updated the Geant4 physics list in LArSoft
- Modified the LArSoft geometry to include the polyethylene shield around the DDG
- Text file generator: 1500 neutrons with 2.5 MeV per event
- Using "protodune_corsika_cmc" for cosmic ray
- Using "protodunesp_39ar" for Ar39
- Same reconstruction chain as data (Work by Junying Huang)

Fig. Simulation confirms that gammas from neutron capture are seen

Comparing Data and Simulations

- DDG off data is subtracted from DDG on data
- The resulting slices (clusters) are the contribution from the DDG
- Chi-square minimization used to fit the data with MC simulations
- Excluded bins up to 50 cm and from 550 cm to ignore the edge effects

$$\chi^{2} = \sum_{i=bins} \frac{\left[\left(D_{on,i} - D_{off,i} \right) - \beta \left(MC_{on,i} - MC_{off,i} \right) \right]^{2}}{D_{on,i} - D_{off,i}}$$

 $D_{on,i}$: DDG on – Data $MC_{on,i}$: DDG on – MC $D_{off,i}$: DDG off – Data $MC_{off,i}$: DDG off - MC

08/08/2024

What can we conclude from this?

Fig. Plot with data and the fit. Number of neutron candidates on Y-axis and vertical position on X-axis.

- Fit parameter was $\beta = 0.74$
 - Simulations overestimate number of clusters in an event
- Expect to see more activity at the top
- Good agreement between data and MC, except at the edges
- Possible inefficiency at the top of the detector
- Excess neutron candidates at the bottom, in data

Note: <u>Also see the machine-learning-based analysis</u> result (done by L. Uboldi and P. Sala, CERN)

IStart

Conclusions

- Used MC Simulations to fit Data
- Key features in Data are also seen in Monte Carlo simulations
 - Large number of clusters at the top
 - Long attenuation tail
 - Neutrons do reach the bottom of the protoDUNE detector
- Need to know why there is an inefficiency at the top of the detector
- Need to identify the full gamma cascade or individual gammas from a single neutron capture on Ar-40