Modular Cavity Status

Daniel Bowring

Motivation

Conceptual RF Design

Mechanica Design

Experimenta Design

Fabrication Status

Future Plans

Modular Cavity Status

Daniel Bowring

Lawrence Berkeley National Laboratory

March 15, 2013

Maximum gradient decreases as applied *B*-field increases.

D. Huang *et al., RF Studies at Fermilab MuCool Test Area*. Proc. PAC 2009, TU5PFP032, p. 888. Vancouver, Canada, 2009.

Reduction in gradient manifests as increased RF breakdown, cavity damage.

Modular Cavity Status

Daniel Bowring

Motivation

Conceptua RF Design

Mechanica Design

Experimenta Design

Fabrication Status

Future Plans

Damage from RF breakdown on the walls of an 805 MHz pillbox cavity. Surface is TiN-coated Cu. Damage spots are mm-scale.

RF breakdown in magnetic fields: Open Questions

Modular Cavity Status

Daniel Bowring

Motivation

Conceptual RF Design

Mechanica Design

Experimenta Design

Fabrication Status

Future Plans

- Does pulsed heating / cyclic fatigue play a role?
- Can we mitigate this problem via clever material choices?
- What role does the coupler play?
- Does measurement order (0 T vs. 3 T) play a role?

The modular cavity addresses these questions. This talk presents the design and fabrication status of the modular cavity.

Q: Who is building this cavity?

Modular Cavity Status

Daniel Bowring

Motivation

Conceptual, RF Design

Mechanica Design

Experimenta Design

Fabrication Status

Future Plans

A: Lots of people.

- **1** LBNL is responsible for the overall R&D effort.
- 2 FNAL (the MuCool folks) have contributed much to the design effort / integration with MTA systems.
- SLAC is responsible for mechanical design, fabrication. They have also brought their ACE3P expertise to the design process.
- \sim 20 people at 4 institutions have contributed.

Design Goals

Modular Cavity Status

Daniel Bowring

- Motivation
- Conceptual, RF Design
- Mechanica Design
- Experimenta Design
- Fabrication Status
- Future Plans

- Evaluate theories of RF breakdown in strong magnetic fields. (c.f. D. Stratakis et al., Effects of external magnetic fields on the operation of high-gradient accelerating structures. Nucl. Inst. Meth. A, 620 (23) 2010.)
- Performance limited by *cavity*, not *coupler*. (Coupler design)
- Replace damage quickly, cheaply when damage occurs. (Modularity)
- Evaluate multiple materials, surface treatments. (Modularity)
- Use facilities at MTA. (Fit the whole package in the Lab G solenoid.)

Simulation Effort

TEM3P G4beamline ACE3P and G4beamline indispensable during design phase.

Multipacting simulation effort

achieve Q.

coupling specs.

Track3P multipacting simulations at 0, 3 T verify no resonant trajectories at problematic energies.

RF parameters

Modular Cavity Status

Daniel Bowring

Motivation

Conceptual, RF Design

Mechanic: Design

Experimenta Design

Fabrication Status

Future Plans

	Mat.	Freq.	Q_0	$Q_{ m ext}$	β	Neck	Field
		(MHz)				width	$Ratio^*$
						(mm)	
ſ	Cu	805.012	25605	15854	1.62	65.25	5.36
	Be	805.012	20499	15854	1.30	65.25	5.36

*Denotes the ratio of two fields: (1) the maximum surface electric field on the "beam axis"; (2) the maximum surface electric field elsewhere, i.e. on the coupling iris.

Cavity design is over-coupled in anticipation of clamping losses.

Mechanical Design: Overview

Modular Cavity Status

Daniel Bowring

Motivation

Conceptua RF Design

Mechanical Design

Experimenta Design

Fabrication Status

Mechanical Design (slide from David Martin)

Modular Cavity Status

Daniel Bowring

Motivation

Conceptua RF Design

Mechanical Design

Experimenta Design

Fabrication Status

Future Plans

Cavity and Waveguide

Mechanical Design (slide from David Martin)

Daniel Bowring

Motivation

Conceptual RF Design

Mechanical Design

Experimenta Design

Fabrication Status

Future Plans

Cavity and Waveguide

Mechanical Design: Overview

Modular Cavity Status

Daniel Bowring

Motivation

Conceptua RF Design

Mechanical Design

Experimenta Design

Fabrication Status

Preliminary experimental program overview

Modular Cavity Status

Daniel Bowring

Motivation

Conceptual RF Design

Mechanica Design

Experimental Design

Fabrication Status

Future Plans

1 Control runs on "regular" TiN-coated Cu end plates.

- Does run order (0 vs. 3 T) matter?
- Cu surface roughness comparable to that of Be end plates.
- Quantify breakdown, damage behavior in this new cavity.
- 2 Assessment, workshop.
- 3 Study effects of chemical polishing on Cu performance.
- 4 Study effects of baking on Cu performance.
- 5 Run Be end plates.
- 6 Assessment.

A complete version of this document is available at http://mice.iit.edu/mta/rf/modular/
experimental_plan/experimental_plan.pdf

login = modular passwd = MOdu1aR Comments, questions welcome.

What does a run look like?

Modular Cavity Status

Daniel Bowring

Motivation

Conceptual RF Design

Mechanica Design

Experimental Design

Fabrication Status

Future Plans

- Commission at 0 T.
- Open, inspect cavity.
- Run at 0 T.
- Open, inspect cavity.
- Repeat process at 3 T.

0 T, 3 T runs may be reversed, depending on the outcome of the control runs.

Automated damage inspection software will improve, speed up analysis.

Modular Cavity Status

- Daniel Bowring
- Motivation
- Conceptua RF Design
- Mechanica Design

Experimental Design

- Fabrication Status
- Future Plans

- Input: digital photos at regular intervals during the experiment.
- Output: Locations, sizes, creation times of all breakdown damage spots.
- Developed using free, open source software → This will be straightforward for you to install and run on your machine.
- Relevant beyond the modular cavity.
- Development supported by Muons, Inc.

Fabrication is underway.

Modular Cavity Status

> Daniel Bowring

Motivation

Conceptual RF Design

Mechanica Design

Experimenta Design

Fabrication Status

- We began cutting metal in February!
- Most work done in-house at SLAC.
- Regular, bi-monthly status meetings.

Fabrication Status as of February 28.

Modular Cavity Status

Fabrication Status

By Month Due	DESCRIPT	DATE_MS	Sum of QTY_ORDER	Sum of QTY_REC
2013				-
Feb				
SK-SB-70126287-0	RECTANGULAR FLANGE BLANK	2/25/13	2	0
SK-SB-70126227-0	WR 975 O/P FLANGE BLANK	2/25/13	2	0
Mar				
PF-701-262-93-0	VIEWPORT INSERT	02/06/13	6	0
PF-701-262-83-0	OUTPUT BLOCK II	02/06/13	1	0
PF-701-262-84-0	COOLING CHANNEL LID	02/06/13	2	2
PF-701-262-79-0	COPPER PLATE	02/06/13	2	2
PF-701-262-90-0	END PLATE	02/06/13	1	1
PF-701-262-56-0	PIVOT MOUNT	S.B.V.	4	4
PF-701-262-69-0	WR 975 OUTPUT FLANGE	2/25/13	1	0
PF-701-262-97-0	SLOTTED PLATE	02/25/13	2	0
PF-701-262-63-0	TUBE	02/28/13	2	2
PF-701-262-64-0	6.00"OD ROT CF FLANGE MOD	02/22/13	2	2
PF-701-262-70-	STIFFENER	02/25/13	3	3
PF-701-262-16-0	PORT SPOOL	02/25/13	6	8
PF-701-262-62-0	TUBE, SUPPORT ARM	02/27/13	2	0
PF-701-262-58-0	MIDDLE PLATE	02/25/13	4	0
PF-701-262-59-0	END PLATE B	02/25/13	2	2
PF-701-262-61-0	END PLATE A	02/25/13	2	2
PF-701-262-95-0	MOUNT BLOCK	02/28/13	2	2
PF-701-262-96-0	GUSSET BAR	02/28/13	2	0
PF-701-262-98-0	8-32 BRAZE INSERT	02/28/13	12	0

Fabrication Photos

Modular					
Cavity	Status				

Daniel Bowring

Motivation

Conceptual RF Design

Mechanica Design

Experimenta Design

Fabrication Status

Looking forward

Modular Cavity Status

Daniel Bowring

Motivation

Conceptual RF Design

Mechanica Design

Experimenta Design

Fabrication Status

- Duplicate cavities.
- Build another cavity with gap length 15 cm.
- Dark current measurements using Be end plates.
- Button/anti-button tests.
- Exotic materials: Cu alloys, etc.