Implementation of Near → **Far Extrapolation within DUNE-PRISM Software**

DUNE-PRISM Analysis Meeting

Ioana Caracas

08.08.2024

Tailored PRISM Analysis with FDErecPred : applying coefficients

Tailored PRISM Analysis with FDErecPred : applying coefficients

Classic PRISM Prediction vs PRISM Prediction with NDFDExtrapolation

Classic PRISM Prediction

PRISM Prediction with NDFDExtrap

Classic PRISM Prediction vs PRISM Prediction with NDFDExtrapolation

PRISM Prediction with NDFDExtrap

- Perfect match between PRISM Prediction with NDFDExtrap (by construction) but more MC components → would probably be affected by systematics more..
- Nominal oscillation fit should result in perfect (no biased) minimum

Classic PRISM Prediction

Oscillation fits – nominal (no systs) case

• Exposure 336 kt-MW-yr (7 yr in numu mode only)

Questions / Discussions

- Is this the MC correction we want to have in the end? (MCCorrection = FDOscSpectrum PRISMPredNDFDExtap)
 - By definition we would have perfect match between this prediction and FD data for the nominal case
 - Would probably end up using more MC dependency than before
 - Should we add a similar "MC Correction" for the classic PRISM prediction for a 1 to 1 comparison?
 - Would some "network provided resolution: same events from the network as a function of ErecPred and ErecCAFFD be useful? use this resolution instead of the MC correction?
- Why do we have the bump / bias at 1 GeV? Is this network related? Could it be improved?
- Mainly for Alex and Radi (can discuss tomorrow as well as on slack): would it make sense to have some FDEfficiency (FDErecPred) rather than FDEfficiency (FDEredCAFs) that we use now? this is not the reason for the 1 GeV bump

Ideas / suggestions are more than welcome :)

FD Efficiency (FDErecPred)

we need to apply efficiency correction for all generated events (not only for those with ND Cuts)
− CVN score for events with no ND cuts is not reliable → network was not trained with this events

Idea/question: should one train the network for all events and save the corresponding CVN scores, but keep on using the FDErecPred for selected events (ND Cuts) only?

- ideally CVN FDPred would look "same" as CVN FDCAFs \rightarrow FDEfficiency (FDErecPred) correction would have the same shape + magnitude as FDEfficiency(FDErec)

Tailored PRISM Analysis with FDErecPred : applying coefficients ND Efficiency Smear ND Generated Events (ETrue) ND Selected EventsCC (FDErecPred) (smearing matrix) (smearing matrix) FDEfficiency **Apply coefficients –FD Selected Events (FDErecPred)** ND Generated Events (FDErecPred) from MC (FDErec) PRISMPred - Data) / Data 0.4 Events / GeV 3500 'Data 0.2 Classic PRISM Pred 3000 PRISM Pred with FDErecPred. FD Eff Correction 2500 -0.2 Classic PRISM Pred 2000 Classic PRISM Pred with FDErecPred -0.4 1500 -0 7 8 9 10 Neutrino E_{rec.} (GeV) 1000 - should we go for MC correction at this point ? 500 10 2 Neutrino E_{rec} (GeV)