Long-Lived Particles at Spallation Sources

In collaboration with C. Argüelles (Harvard) & S. Urrea (IFIC, Valencia)

Matheus Hostert <u>mhostert@g.harvard.edu</u> Neutrino Theory Network fellow at Harvard University FNAL theory seminar Sep 5 2024

Incompleteness problems:

Dark matter

Neutrino masses and mixing

Predictivity problems:

Topological angle $\theta_{\rm QCD} \rightarrow 0$ (strong CP problem)

Fermion mass pattern

Higgs mass and naturalness

Matter-antimatter asymmetry

DARK SECTOR (DS)

No SM charge

New fundamental mass scales

New particles can be light

Testable!

Prongs of intensity frontier

The existence of new light particles is not *mandatory* for solving the predictivity and incompleteness issues of the Standard Model.

But it sure would provide major hints of the direction forward.

*but not free, we do have to think about it.

M. Hostert 80 00 68

Long-lived particles (Intensity & Lifetime)

Searching for new "dark sectors" is cheap* but also exciting!

Outline:

1) Spallation (neutron) sources: what and why?

2) Opportunities with neutrino detectors

3) Long-lived particles below K, π , and μ masses

What is a Spallation (Neutron) Source?

O(GeV) proton beam on dense targets

- \rightarrow bright neutron sources
- \rightarrow efficient pion (+ kaon) production

Why a Spallation (Neutron) Source?

Neutron science and applications... lots of it.

But why not, e.g., a reactor?

ILL reactor: 58 MW (1e15 neutrons/cm²/s)

Oak Ridge Spallation: 1.4 MW (1e14 neutrons/cm²/s — Average)

Atmosphere:

cosmic ray power (~0.1 neutrons/cm²/s)

Oak Ridge Spallation Source instruments

managed by UT Battelle for the US Department of Energy.

Beams give you more control:

no secondary processes 1) (no criticality needed — endothermic)

0.60.50.1 0 (

Impact of the reactor sutdown in Japan on the KamLAND program

Why a Spallation (Neutron) Source?

Beams give you more control:

- no secondary processes (no criticality needed — endothermic)
- 2) More neutrons per proton

Beams give you more control:

- no secondary processes 1 (no criticality needed — endothermic)
- More neutrons per proton 2)
- Sources are pulsed 3

We will continue to see development of spallation sources around the world.

This is an opportunity for fundamental physics.

Pulse shape

400 ns single-pulse

Los Alamos

J-PARC

290 ns single-pulse **Upgrade to 100 ns with LANSCE-PSR**

100 ns double-pulse (total 800 ns)

Spallation sources as a neutrino source

 $10^{20} - 10^{22} \pi^+$, K^+ , and μ^+ decays at rest

Production data on p+Be target...

Produced	Exclusive	M_X	$\sqrt{s_{thresh}}$	E ^{beam} _{thresh}
Hadron	Reaction	(GeV/c^2)	(GeV)	GeV
π^+	$pn\pi^+$	1.878	2.018	1.233
π^{-}	$pp\pi^+\pi^-$	2.016	2.156	1.54
π^0	$pp\pi^0$	1.876	2.011	1.218
K^+	$\Lambda^0 p K^+$	2.053	2.547	2.52
K^{-}	ppK^+K^-	2.37	2.864	3.434
K^0	$p\Sigma^+K^0$	2.13	2.628	2.743

CEvNS and neutrino physics program

Long-lived particles at Spallation sources

 $10^{20} - 10^{22} \pi^+$, K⁺, and μ^+ decays at rest

Long-lived particles at Spallation sources

Can also search for a flux of new states.

Long-lived particles at Spallation sources

Can also search for a flux of new states.

1) Spallation (neutron) sources: what and why? 2) Opportunities with neutrino detectors 3) Long-lived particles below K, π , and μ masses

Outline:

What do we already have? The LSND $\nu - e$ scattering measurement

Extremely high intensity beam from ~93 - 98

~160 ton of liquid scintillator

~ 2×10^{23} POT (about a paperclip's worth of protons)

A striking measurement of $\nu + e \rightarrow \nu + e$ scattering with about 10% precision on the cross section. (*not the same channel as the LSND anomaly.)

What do we already have? The LSND $\nu - e$ scattering measurement

LSND: $\nu + e \rightarrow \nu + e$ scattering (*not the same channel as the LSND anomaly.)

Very useful for BSM applications.

But is has its limitations:

- 1) Very wide beam pulse (600 µs) and low E (π and μ only).
- 2) Only single EM showers (how to account for misID of e^+e^- ?)
- 3) Limited energy range: 18 MeV < $E_{\rm vis}$ < 50 MeV
- 4) Only the most forward electrons: $\cos \theta_{\rm vis} > 0.9$

No data release... how to model efficiencies? All bounds come from theorists recast of this plot \rightarrow

The Japan Neutron Spallation Source @ J-PARC

KOTO @ 425 m JSNS²-I @ 24 m

JSNS v

KOTO: **Pros:** Low-density vol and low bkg **Cons:** Further away **Best for:** π^0 and $\gamma\gamma$

ND280:

Pros: Low-density and magnetized **Cons:** Further away Best for: any charged final state

KOTO: **Pros:** Low-density vol and low bkg **Cons:** Further away **Best for:** π^0 and $\gamma\gamma$

ND280:

Pros: Low-density and magnetized **Cons:** Further away Best for: any charged final state

* D2O already has data and H2O is under construction.

COH-Ar-750

- Scintillation calorimeter
- 750 kg of purified liquid Ar •
- Measure ν_e Ar CEvNS

For this study, I will require:

50 events/3 years of operation:

750 kg (LAr) 508 kg (H2O) + 549 kg (D2O)

Other detectors? For example: Surface deployment of 4-ton detector possible with $L \sim 22 \text{ m}$.

Possible for PROSPECT-II? (under investigation with B. Littlejohn)

Opportunities at Los Alamos

CCM: 7 tons of LAr **Detects scintillation of Ar**

In this study, we project sensitivity for 40 events/3 years of operation

1) Spallation (neutron) sources: what and why? 2) Opportunities with neutrino detectors

Outline:

3) Long-lived particles below K, π , and μ masses

Model	Production	Decay	Timing signature	J-PARC I
	$\mu^+ \to e^+ \nu N$	$N \rightarrow \nu e^+ e^-$		ND2
Neutral Leptons		$N o u e^+ e^-$		ND2
	$\pi^+/K^+ \to \ell N$	$N \to \nu \mu^+ e^- / \pi^+ e^-$		JSNS ² and
		$N ightarrow u \mu^+ \mu^- / \pi^+ \mu^-$		$\rm JSNS^2$ and
		$N ightarrow u \pi^0$	_ ,	КОТ
Portal Scalar	$K^+ \to \pi^+ S$	$S \rightarrow e^+ e^-$		ND2
		$S \to \mu^+ \mu^- / \pi^+ \pi^-$		$\rm JSNS^2$ and
		$S \to \pi^0 \pi^0$		КОТ
Portal Scalar	$\mu^+ \to e^+ \nu \nu S_M$	$S_M o \gamma \gamma$		КОТ
Higgs Coupling	$K^+ \to \pi^+ a_\phi$	$a_{\phi} \rightarrow e^+ e^-$		ND2
		$a_{\phi} \to \mu^+ \mu^-$		JSNS ² and
Flavor Violating	$\mu^+ \to e^+ a_{\rm FV}(\gamma)$	$a_{ m FV} ightarrow e^+ e^-$		ND2
Weak Violating	$\pi^+ \to e^+ \nu_e a_{\rm WV}$	$a_{\rm WV} \rightarrow e^+ e^-$		ND2

Timing profile of LLP signatures

A lot of these come from μ^+ and π^+ decays.

~1 GeV p^+ beams are in the game.

Model	Production	Decay	Timing signature	J-PARC I
	$\mu^+ \to e^+ \nu N$	$N \rightarrow \nu e^+ e^-$		ND2
Neutral Leptons		$N o u e^+ e^-$		ND2
	$\pi^+/K^+ \to \ell N$	$N o u \mu^+ e^- / \pi^+ e^-$		JSNS ² and
		$N o u \mu^+ \mu^- / \pi^+ \mu^-$		$\rm JSNS^2$ and
		$N ightarrow u \pi^0$		КОТ
Portal Scalar	$K^+ o \pi^+ S$	$S \rightarrow e^+ e^-$		ND2
		$S \to \mu^+ \mu^- / \pi^+ \pi^-$		$\rm JSNS^2$ and
		$S \to \pi^0 \pi^0$	<u> </u>	КОТ
ı Portal Scalar	$\mu^+ \to e^+ \nu \nu S_M$	$S_M o \gamma \gamma$,	КОТ
Higgs Coupling	$K^+ \to \pi^+ a_\phi$	$a_{\phi} \rightarrow e^+ e^-$		ND2
		$a_{\phi} \to \mu^+ \mu^-$		JSNS ² and
Flavor Violating	$\mu^+ \to e^+ a_{\rm FV}(\gamma)$	$a_{ m FV} ightarrow e^+ e^-$		ND2
Weak Violating	$\pi^+ \to e^+ \nu_e a_{\rm WV}$	$a_{\rm WV} \rightarrow e^+ e^-$		ND2

1) Spallation (neutron) sources: what and why?

2) Opportunities with neutrino detectors

Outline:

- 3) Long-lived particles below K, π , and μ masses
 - Higgs portal scalar: the simplest case

Long-lived particles at spallation sources Higgs portal scalar

Arguably the simplest extension of the SM:

Singlet scalar particle S that mixes with the Higgs boson a.k.a. Higgs Portal Scalar (HPS).

Production (almost) exclusively through K^+ decays.

J-PARC is most well suited for this. (+ accelerators like T2K and FNAL's SBN program)

- 1) Spallation (neutron) sources: what and why?
- 2) Opportunities with neutrino detectors
- 3) Long-lived particles below K, π , and μ masses
 - **Axion-like particle: flavor-violating couplings**

Outline:

Long-lived particles at spallation sources A lepton-flavor-violating axion-like particle (LFV ALP)

Light goldstone boson to probe lepton flavor violation

Complementary to $\mu \rightarrow e$ searches (Mu2e, Mu3e, MEG-II).

Indirect limits constraint products of couplings (not a killer).

Direct limit: $\mathscr{B}(\mu^+ \to e^+ a_{\rm fv}) \lesssim 10^{-5}$ if a is long-lived.

That would lead to about $10^{14} - 10^{15} a_{fv}$ /year in typical spallation sources...

 $j_{\rm FV}^{\rho} = y_{e\mu}^{L} \frac{L_{e}H\gamma^{\rho}HL_{\mu}}{\Lambda^{2}} + c_{e\mu}^{R}\overline{e}_{R}\gamma^{\rho}\mu_{R} \quad \xrightarrow{\rm EW} \overline{e}\gamma^{\rho}(c_{e\mu}^{L}P_{L} + c_{e\mu}^{R}P_{R})\mu$

Long-lived particles at spallation sources A lepton-flavor-violating axion-like particle (LFV ALP)

Light goldstone boson to probe lepton flavor violation

Far more sensitive than indirect probes in this region.

This is a high-energy final state $\simeq m_{\mu}/2$, so LSND "threw it away". Easy to see with new searches.

 μ^+ time

L. Calibbi et al 2006.04795 and M. Bauer et al, 2110.10698

1) Spallation (neutron) sources: what and why?

2) Opportunities with neutrino detectors

Outline:

- 3) Long-lived particles below K, π , and μ masses
 - Minimal muonphilic scalars

Long-lived particles at spallation sources Muonphilic scalar

Exotic force that couples only to muons

A popular effective model for discrepancy(?) in $(g - 2)_{\mu}$

$$-\mathscr{L}_{\mathrm{M}} \supset rac{Y_{\mu\mu}}{\Lambda} S_M \overline{L_{\mu}} H \mu_R + ext{ h.c. } \stackrel{\mathrm{E}\!\!/\!\!\mathrm{W}}{\longrightarrow} y_{\mu\mu} S_M \overline{\mu} \mu_R$$

Very hard to constrain — no coupling to neutrinos.

Below dimuon threshold ($m_S < 2m_\mu$), the scalar is long-lived:

Long-lived particles at spallation sources Muonphilic scalar

Exotic force that couples only to muons

Setting new limits with LSND recast — no g-2 at low masses.

Improvements expected in all cases.

(Hard for JSNS² as it is only a single flash).

 μ^+ time

Long-lived particles at spallation sources Muonphilic scalar

Exotic force that couples only to muons

Turning on an invisible branching ratio for S_M may be possible, but requires a very specific hierarchy of couplings.

 μ^+ time

1) Spallation (neutron) sources: what and why?

2) Opportunities with neutrino detectors

3) Long-lived particles below K, π , and μ masses How about dark particle production in charged pion decay?

Outline:

- Weak interactions in the SM are left-handed.
- Angular momentum needs to be conserved.

The pion is a spin-0 particle, so **neutrino and positron helicities have to be anti-aligned!**

$$\Gamma \propto G_F^2 f_\pi^2 m_\pi^3 \times \left(\frac{m_e^2}{m_\pi^2}\right)$$
 -

- Weak interactions in the SM are left-handed.
- Angular momentum needs to be conserved.

The pion is a spin-0 particle, so **neutrino and positron helicities have to be anti-aligned!**

- **Helicity suppression:**
 - $\rightarrow \mathscr{B} \sim 10^{-4}$ branching ratio for π^+ .

No helicity flip.

Well, there's an easy way out: make it a three-body decay! Radiative pion decays:

No helicity flip.

Can the radiative mode really be that much larger than the core leptonic process?

Well, there's an easy way out: make it a three-body decay! Radiative pion decays:

Feels like cheating...

No helicity flip.

$$\left(\frac{m_{\pi}^2}{m_e^2}\right) \left(\frac{\alpha}{4\pi}\right) \sim 40$$

Primary vertex for pion decay:

$$\mathscr{L} \supset G_F f_\pi \times \partial_\mu \pi \left(\overline{\ell} \gamma^\mu \nu_\ell \right)$$

Point-like pion & leptonic bremsstrahlung

Not helicity suppressed.

Primary vertex for pion decay:

Not gauge invariant. Need a replacement:

 $\mathscr{L} \supset G_F f_\pi \times \partial_\mu \pi \left(\overline{\ell} \gamma^\mu \nu_\ell \right) \qquad \qquad \partial_\mu \pi \left(\overline{\ell} \gamma^\mu \nu_\ell \right)$

Point-like pion & leptonic bremsstrahlung

Seagull diagram unavoidable in gauge invariant theory.

Still helicity suppressed!

 $\partial_{\mu}\pi\left(\overline{\ell}\gamma^{\mu}\nu_{\ell}\right) \to (\partial_{\mu} - ieA_{\mu})\pi\left(\overline{\ell}\gamma^{\mu}\nu_{\ell}\right)$

Internal Bremsstrahlung 3

Still helicity suppressed!

Structure Dependent V and A

 M_{e}

 π no longer "point-like"

 $\propto m_e$

These are suppressed by M_{ρ}^{-1} instead so can be safely neglected!

New vector bosons Radiative pion decays

$$k^{\mu}\mathcal{M}_{\mu} \propto \left(Q_{\pi^{+}} - (Q_{\nu} - Q_{e})\right) \overline{\nu_{e}} \left(k^{\mu}\gamma_{\mu}P_{L} - m_{e}P_{R}\right)e$$

Enhancement by:

- 1) helicity flip,
- 2) longitudinal mode emission.

$$\Gamma_{\text{protophobic}} \sim \Gamma_{\text{SM}} \times \left(\frac{m_{\pi}^4}{m_e^2 m_X^2}\right)$$

SINDRUM-I search for bumps in $\pi^+ \rightarrow e^+ \nu_e e^+ e^-$ decays.

New vector bosons Radiative pion decays

$$k^{\mu}\mathcal{M}_{\mu} \propto \left(Q_{\pi^{+}} - (Q_{\nu} - Q_{e})\right) \overline{\nu_{e}} \left(k^{\mu}\gamma_{\mu}P_{L} - m_{e}P_{R}\right)e$$

Enhancement by:

- 1) helicity flip,
- 2) longitudinal mode emission.

$$\Gamma_{\text{protophobic}} \sim \Gamma_{\text{SM}} \times \left(\frac{m_{\pi}^4}{m_e^2 m_X^2}\right)$$

BTW: This basically excludes all exotic 17 MeV vector Boson explanations of ATOMKI anomaly

Long-lived particles at spallation sources "Weak-violating" axion-like-particle (WV ALP)

Light goldstone boson that probes exotic electron couplings

$$j^{\mu}_{\rm PQ} = \frac{\bar{g}_{\ell\ell}}{2m_{\ell}} \bar{\ell} \gamma^{\mu} \ell + \frac{g_{\ell\ell}}{2m_{\ell}} \bar{\ell} \gamma^{\mu} \gamma_5 \ell + \frac{g_{\nu_{\ell}}}{2m_{\ell}} \bar{\nu}_{\ell} \gamma^{\mu} P_L \nu_{\ell} \,.$$

Lifting helicity suppression in 3-body π^+ decay is not easy, but can be done in a class of "weak-violating" ALP models.

This is an exception: underlying current is not gauged, so it is ok! W. Altmannshoffer et al, arXiv:2209.00665

In this case, three-body decays of the pion are the dominant source of these ALPs at accelerators.

M. Hostert

 π^+ time

Long-lived particles at spallation sources "Weak-violating" axion-like-particle (WV ALP)

Lifting helicity suppression in 3-body π^+ decay is not easy, but can be done in a class of ALP models with "weak-violating" (SU $(2)_L$ -violating) couplings. W. Altmannshoffer et al, arXiv:2209.00665

In this case, three-body decays of the pion are the dominant source of these ALPs at accelerators.

 π^+ time

See also CCM collaboration, arXiv:2309.02599

1) Spallation (neutron) sources: what and why?

2) Opportunities with neutrino detectors

3) Long-lived particles below K, π , and μ masses

Outline:

- Heavy neutral leptons (low-scale seesaw)

Long-lived particles at spallation sources Heavy neutral leptons

Low-scale neutrino mass model

Improvement over LSND because of the stringent signal selection criterion to fake $\nu - e$ scattering.

Most final states are relevant for K^+ parentage so they have limited sensitivity.

Competition with LSND and meson peak searches.

 π^+/K^+ and μ^+ time

LSND limit derived in Y. Ema, Z. Liu, K. Lyu, M. Pospelov, <u>arXiv:2306.07315</u>

See E. Fernández-Martínez, M.González-López, J. Hernández-García, MH, J. Lópes-Pavón, 10.1007/JHEP09(2023)001

Long-lived particles at spallation sources Heavy neutral leptons

Low-scale neutrino mass model

Improvement over LSND because of the stringent signal selection criterion to fake $\nu - e$ scattering.

Most final states are relevant for K^+ parentage so they have limited sensitivity.

Competition with LSND and meson peak searches.

 π^+/K^+ and μ^+ time

LSND limit derived in Y. Ema, Z. Liu, K. Lyu, M. Pospelov, <u>arXiv:2306.07315</u>

See E. Fernández-Martínez, M.González-López, J. Hernández-García, MH, J. Lópes-Pavón, 10.1007/JHEP09(2023)001

Long-lived particles at spallation sources Heavy neutral leptons — avoiding cosmological limits?

Cosmological limits typically make the sub-100 MeV region less interesting in minimal HNL models.

If new forces exist (e.g., magnetic moments or dark photons), decay-in-flight limits on LLPs quickly become the most important.

Spallation sources are useful for "non-minimal" HNL models. For example:

C. Argüelles, N. Foppiani, MH arXiv:2109.03831

1) Spallation (neutron) sources: what and why? 2) Opportunities with neutrino detectors

Outline:

- 3) Long-lived particles below K, π , and μ masses
- Bonus) Thoughts on future and next-generation facilities

Future facilities

5 MW (1-2 GeV p^+) — huge intensity, but worse background rejection.

M. Hostert

Second Target Station at SNS More neutrinos (rotating target)

First target would receive 2.0 MW at 45 Hz Second target would receive 0.7 MW at 15 Hz Neutrino rate is actually the same

Summary

- volume detectors, and *extremely rare processes* from LLPs could appear.

- Not all about POTs and volume: background rejection, timing, and people-power. Lots of stones are left unturned.
 - **Build bigger and away from the neutrino alley? Lower density CCM?**

The future is bright and I look forward to the new searches!

Thank you for listening!

Matheus Hostert (mhostert@g.harvard.edu)

1) Spallation targets are a very messy environment... but move a bit further out and build sufficiently large-

2) Shown a non-exhaustive list of long-lived particle (LLP) models that can be constrained with existing spallation sources and detectors. Usually less minimal to survive other limits below π and μ masses.

3) A clear application for a well-shielded, low-density, large-volume, and fast detector close to the source.

Magnificent CEvNS 2024

Back-up slides

Three examples for requiring $\gamma\gamma \leftrightarrow e^-$ mis-identification:

- 1) $E_{e_{inv}} < 5$ MeV or $\theta_{ee} < 5^{\circ}$
- 2) $E_{e_{inv}} < 10$ MeV or $\theta_{ee} < 10^{\circ}$
- 3) $E_{e_{inv}} < 15$ MeV or $\theta_{ee} < 15^{\circ}$ (strongest limit)

All events must also satisfy signal selection criterion: 18 MeV < $E_{\rm vis}$ < 50 MeV and $\cos \theta_{\rm vis}$ > 0.9

Three examples for requiring $\gamma\gamma \leftrightarrow e^-$ mis-identification:

- 1) $E_{e_{inv}} < 5$ MeV or $\theta_{ee} < 5^{\circ}$
- 2) $E_{e_{inv}} < 10$ MeV or $\theta_{ee} < 10^{\circ}$
- 3) $E_{e_{inv}} < 15$ MeV or $\theta_{ee} < 15^{\circ}$ (strongest limit)

All events must also satisfy signal selection criterion: 18 MeV < $E_{\rm vis}$ < 50 MeV and $\cos \theta_{\rm vis}$ > 0.9

Heavy Neutral Leptons

PI M. Hostert

E. Fernández-Martínez, M.González-López, J. Hernández-García, MH, J. Lópes-Pavón, 10.1007/JHEP09(2023)001

Axion-like particles with kaon decay at rest

(Codominance) The same figure as Fig. 1 but with FIG. 2. $c_{WW} = c_{BB} = c_{GG}$. The sensitivity for $m_a \ll m_{\pi}$ is worse than the gluon dominance case since $|c_{\gamma\gamma}^{\rm eff}| \ll 1$ for this specific choice of the parameters.

FIG. 1. (Gluon dominance) Sensitivities of MicroBooNE and JSNS² compared with existing limits and other projected sensitivities when all couplings are induced by a gluon coupling c_{GG} at a high scale. The MicroBooNE sensitivity is cut at 210 MeV

European Spallation Source: Hidden Neutrinos

SMiness

Inelastic Dark Matter

PI M. Hostert

MicroBooNE and KDAR from NuMI absorber

Fermilab's fortunate coincidence:

SBN program detectors are close to a KDAR source:

M. Hostert

https://arxiv.org/pdf/2204.04575

Nuclear	Detector	Target	Distance	Energy thresh-	Deployment
target	Technology	Mass (kg)	from source	old (keV^{\dagger})	dates
CsI[Na]	Scintillating crystal	14	20 m	5	2015-2019
Ar	Single-phase LAr*	24	$29 \mathrm{m}$	20	2016-2021
Ge	$\mathrm{HPGe}\;\mathrm{PPC}^{\ddagger}$	18	22 m	<5	2022
NaI[T1]	Scintillating Crystal	3500	22 m	13	2022
Ar	Single-phase LAr*	750	29 m	20	2025
Ge	$\mathrm{HPGe}\;\mathrm{PPC}^{\ddagger}$	50	$22 \mathrm{m}$	$<\!\!5$	2025
\mathbf{CsI}	CsI+SiPM arrays at 40 K	$10 \sim 15$	20 m	1.4	2025
1 D1	1 *1· ·1 t /	• • •	. † 1	•1	• • •

TABLE I. Parameters of subsystems for CEvNS detection.

Finished Planned, *liquid argon, $^{\ddagger}p$ -type point-contact, † nuclear recoil energy, approximate threshold

TABLE II. Additiona	al detectors that	broaden the	physics :	reach	of COHERENT.
---------------------	-------------------	-------------	-----------	-------	--------------

Name	Detector Technology	Main purpose	Deployment dat	
NolvF	185 kg NoI[T]] orwatala	Measure ν_e + I CC cross section	2016 -	
Naive	165 kg Mar[11] Crystais	& beam-related backgrounds	$\mathbf{present}$	
MADS	scintillation panels inter-	Measure beam-related	2017 -	
MARS	leafed with Gd-painted foils	neutrons in Neutrino Alley	$\mathbf{present}$	
NIN	liquid scintillator cells	Measure neutrino-induced	2015 -	
\mathbf{cubes}	in lead and iron shields	neutrons (NIN) in lead & iron	$\mathbf{present}$	
D_2O	heavy water	Measure neutrino flux precisely	2022	
	Cherenkov detector	& $\nu_e + O$ inelastic cross section		
LAr	liquid argon time-	Measure ν_e +Ar inelastic	2025	
TPC	projection chamber	cross section	2020	

Current Planned

Exothermic sources have their drawback...

Impact of the reactor sutdown in Japan on the KamLAND neutrino experiment

KamLAND coll. <u>10.1029/2022GL099566</u>

