TMS studies Update

Jeffrey Kleykamp 2024-08-09

Updates

- Kalman Filter PR is on dune-tms
 - https://github.com/DUNE/dune-tms/pull/122
- Nersc-style pileup is now properly simulated
 - Lives in kleykamp_pileup branch
- Alex Booth is going to run TMS at nersc today
 - For ND reco/sim workshop
- Needed a release candidate
 - Suggested kleykamp_pileup. See tagged release
 - Would've liked to incorporate kalman but this talk shows issues
 - Running again is really fast and can be done on fermigrid too

Testing and Validation Framework

- Unfortunately many changes are not thoroughly tested when they are added
 - And some break downstream code bc of branch name changes
 - Please don't change branch names anymore!
 - So trying to validate files
- Added information on validating changes to wiki here
 - See also: dune-tms issue tracker and current PRs
- Ran tests of of several
 - Nersc-style, LAr-only, LAr + TMS
 - And we already found issues with infinite loops, etc. Most resolved on git
 - But there are remaining issues with reco that I'm showing today

What I'm showing today

- Some truth comparisons are not so simple
- Sometimes true particle enters from outside, or interacts, so reco track may not be exactly where true particle is
- So showing reco compared to other reco
 - Specifically track hits relative to track starting location
- Comparing kleykamp_pileup with kalman PR
 - pileup has older reco
 - kalman has kalman filter, but also slightly updated reco

Track Hit x vs z. Relative to Track Start

Track Hit Positions Relative to Track Start

Pileup

Kalman

Plotting track hit x[i] - x[0] vs z[i] - x[0]So we expect all hits to start at 0,0 and then move away

Track Hit Positions Relative to Track End

Pileup

Kalman

Track Hit x vs z, Relative to Track End

Plotting track hit x[i] - x[n-1] vs z[i] - x[n-1]So we expect all hits to end at 0,0 and then move away

Track Hit Positions Relative to Track End

Pileup

Kalman

Plotting track hit x[i] - x[n//2] vs z[i] - x[n//2]So we expect all track centers to cross at 0,0 and then move away

What is Happening?

- Track is roughly linear, but then reco jumps at start/end
 - Likely hurts charge ID
 - Worse in kalman PR

• This issue mostly resolves itself after about 1-3 hits

Conclusion

- Tracking reco issues
 - See comment on PR and issue
- We need champion to go in deep and validate
 - Validation scripts also useful starting point for c++ scripting (way faster than python!)

- See wiki for a primer on the layout of the dune-tms code
- This is partly why I recommended the pileup version for nersc. Also it can handle the pileup