Mu2e Proton Beam Dump Heat Removal System

Italian Summer Intern Program 2024 Midterm Presentation - 22 August

Davide Venturini MSc Nuclear Engineering Università di Pisa Scuola Superiore Sant'Anna Supervisor Kavin Ammigan Co-supervisor Zunping Liu

Proton Beam Dump

The Proton Beam Dump is a component made of **seven steel plates** surrounded by a steel baffle and **concrete** that absorbs the proton beam.

It needs a **Heat Removal System** where air circulates in forced circulation because the **concrete** temperature **should not go over 95** ° **C**.

Task description

Verification of the **operative conditions** of the **Heat Removal System** of Mu2e Proton Beam Dump

- 165 CFM vs 250 CFM
- Arbitrary power distribution generated by MARS code
 - Accident condition (6.7 kW)
 - Normal operation (1.7 kW)

Checking the results of the Excel file

Correction of **minor errors** in turbulent flow correlations

- P.K. Swamee and A.K. Jain formula
- Colebrook formula

Rewriting of the sheet formulas in clearer VBA language

Flow path number		1	2	3	4	5	6	7-1	7-2
		Building supply duct	Crossover line from building air duct to supply header	Supply header	Individual feed pipe	Horizontal gap under the core	Vertical gap between core and wall (half right)	Horizontal gap on top of the core 1 - lateral flow	Horizontal gap on top of the core 2 - longitudinal flow
Use the smaller heat transfer coefficient	W/(m^2-K)	3.6	3.6	2.2	8.1	1.2	2.8	2.5	6.9
Tsurface - Taverage bulk air Calculate the surface temperature (CHECK INPUT)	C C	0.000 20.000	0.000 20.000	0.000	0.000 20.000	75.259 109.065	70.939 156.744	42.959 232.680	0.000 255.442

Results with 165 CFM: very small heat transfer coefficients

Flow path number		1	2	3	4	5	6	7-1	7-2
		Building supply duct	Crossover line from building air duct to supply header	Supply header	Individual feed pipe	Horizontal gap under the core	Vertical gap between core and wall (half right)	Horizontal gap on top of the core 1 - lateral flow	Horizontal gap on top of the core 2 - longitudinal flow
Use the smaller heat transfer coefficient	W/(m^2-K)	4.9	4.9	3.0	10.9	1.7	3.9	3.5	9.3
Tsurface - Taverage bulk air Calculate the surface temperature (CHECK INPUT)	C C	0.000 20.000	0.000 20.000	0.000 20.000	0.000	54.290 86.803	51.290 128.352	31.362 197.475	0.000 223.128

Results with 250 CFM: slightly bigger heat transfer coefficients

🛠 Fermilab

CAD Elaboration

- Presence of **both solid and fluid** components file CADs
- **Merging** of the solid CAD and the fluid CAD in one file
- Checking for **coincidence of the to-be-coupled surfaces**
- **Refinement of details** (removal of holes, small imperfections) to facilitate the meshing process

ANSYS Coupled Simulation

Necessity of a coupled simulation to get the most accurate results

Decision of the **blocks** to put inside of the simulation

ANSYS offers the System Coupling block that couples different phases

Boundary conditions - Heat transfer

Imposed 15 C temperature on the bottom surface of the lower concrete block

Perfect insulation as default conservative assumption

System Coupling Surfaces: the eight coupled surfaces

Boundary conditions - Heat generation

Heat generation from MARS distribution with 1.325 kW of power deposited locally

Mapped heat distribution (obtained)

Mapped heat distribution (previous)

Boundary conditions - Fluid

Imposed inlet velocity
Imposed outlet gauge pressure
Fluid properties: air
Energy equation: on
Thermal boundary conditions: via
System Coupling surfaces

Two-way data transfer

Two-way data transfer

Data is initialized in the uncoupled simulation and **transferred on the coupled interfaces**

More coupling iterations to get the converged and common value

Coupling conditions

To make the coupled convection work, for each surface two transfers are needed :

- Heat Transfer Coefficient from Fluent simulation to Convection Coefficient of Thermal Steady-State simulation
- Near Wall Temperature from Fluent simulation to Convection Reference Temperature of Thermal Steady-State simulation

🖂 🙆 Da	ata Transfers
÷	LES HTC Fluent> Thermal
÷≀	LIS HTC Fluent> Thermal
÷	RES HTC Fluent> Thermal
÷I	RIS HTC Fluent> Thermal
÷I	OES HTC Fluent> Thermal
÷	OIS HTC Fluent> Thermal
÷I	UES HTC Fluent> Thermal
÷	UIS HTC Fluent> Thermal
÷	LES Near Wall Temperature Fluent> Thermal
÷I	LIS Near Wall Temperature Fluent> Thermal
÷≀	RES Near Wall Temperature Fluent> Thermal
÷	RIS Near Wall Temperature Fluent> Thermal
÷	UES Near Wall Temperature Fluent> Thermal
÷	UIS Near Wall Temperature Fluent> Thermal
÷	OES Near Wall Temperature Fluent> Thermal
÷	OIS Near Wall Temperature Fluent> Thermal

Running and convergence

The simulation runs and converges

Presentation of the preliminary results

Steady-state thermal results (**obtained**) Steady-state thermal results (**previous**)

Verification of the results

The results are **not fully coherent** with the previous Excel calculations and separate ANSYS simulations: **more work to be done**

Slow Fluent convergence noted due to complex geometry and coarse mesh

Convergence threshold on residuals had to be increased from the default value due to otherwise very high computational time required

armal Steady State		
Interface: interface-1		
LES Near Wall Temperature Fluent	Conve	erged
RMS Change	2.04E-04	1.57E-04
Weighted Average	2.93E+02	2.93E+02
LES HTC Fluent> Thermal	Conve	erged
RMS Change	1.56E-02	1.36E-02
Weighted Average	4.16E+00	4.11E+00
Interface: interface-2		
LIS HTC Fluent> Thermal	Conve	erged
RMS Change	1.07E-02	5.64E-03
Weighted Average	4.09E+00	4.07E+00
LIS Near Wall Temperature Fluent	Conve	erged
KMS Change	1.82E-04	1.36E-04
Weighted Average	2.93E+02	Angetter
Interface: Interface-3	Comu	ongod
PMC Change	1 995 02	1 626 02
Weighted Average	4 955+99	4 025+00
RES Near Wall Temperature Eluent		erged
PMS Change	2 255-04	1 745-94
Weighted Average	2 935+92	2 935+92
Interface: interface-4	2.000-02	Saddhill6
RIS HIC Fluent and Thermal	Conve	erged
RMS Change	1.24E-02	6-68E-03
Weighted Average	3,96E+00	3.94E+00
RIS Near Wall Temperature Eluent	Conve	erged
RMS Change	1.84E-04	1.21E-04
Weighted Average	2,93E+02	2.93E+02
Interface: interface-5		
OES HTC Fluent> Thermal	Conve	erged
RMS Change	3.11E-02	3.09E-02
Weighted Average	4.91E+00	5.08E+00
OES Near Wall Temperature Fluent	Conve	erged
RMS Change	5.90E-04	4.14E-04
Weighted Average	2.93E+02	2.93E+02
Interface: interface-6		
OIS HTC Fluent> Thermal	Conve	erged
RMS Change	2.86E-02	2.30E-02
Weighted Average	4.99E+00	5.18E+00
OIS Near Wall Temperature Fluent	Conve	erged
RMS Change	5.12E-04	3.78E-04
weighted Average	2.93E+02	2.93E+02
Interface: interface-7		
UES HIC FILLENT> Thermal	Conve	ergeo
KRIS Change	1.091-03	6.44E-04
weighted Average	4.346+00	4.36E+00
Des wear wall remperature Fluent	4 ORE OF	ergeu
KMS Change	4.981-05	4.262-05
Vergnited Average	2.946+02	Landetter
UTS UTC Eluent > Thermal	Contra	henned
DIS NIC FIDENC> INEFINAL	2 425 02	1 055 03
Weighted Average	7 105+00	7 455400
UTS Near Wall Temperature Eluent	(.15ET00	erged
PMS Change	E COE OE	4 425-95
Weighted Average	2 945+92	2 945+92
werdlinen utei näge	2.346402	ARTETRA
rticinant solution status	0.0000000000000000000000000000000000000	
Thermal Steady State	Conve	erged

Future improvements and solutions

Fix the coupled convective heat transfer from the steel to the air due to convection

Remove the **fixed heat flux** between the steel plates and the baffle

Improve convergence speed by tweaking the relaxation factor and improving BC/mesh

x (mm),y (mm),z (mm),h (W/m3) 678.05,678.05,-190,1.28362848 685.55,678.05,-190,1.21412064 693.05,678.05,-190,1.24887456 700.55,678.05,-190,1.86764544 708.05,678.05,-190,2.06559168 715.55,678.05,-190,2.14643232 723.05,678.05,-190,2.92235136 730.55,678.05,-190,2.96617152 738.05,678.05,-190,3.5169456 745.55,678.05,-190,4.3517952 753.05,678.05,-190,3.5660544 760.55,678.05,-190,3.61667424 768.05,678.05,-190,3.43686048 775.55,678.05,-190,3.24269184 783.05,678.05,-190,3.45877056 790.55,678.05,-190,3.29482272 798.05,678.05,-190,3.92568192 805.55,678.05,-190,3.89923872

What to achieve in the end

Fully independent coupled two-way simulation that emulates exactly the behaviour of air, steel and concrete

Heat transfer coefficients for each of the coupled surfaces (to double-check them)

Understanding if **the constraints on the temperatures of the steel and the concrete** have been met for all the different operating conditions

