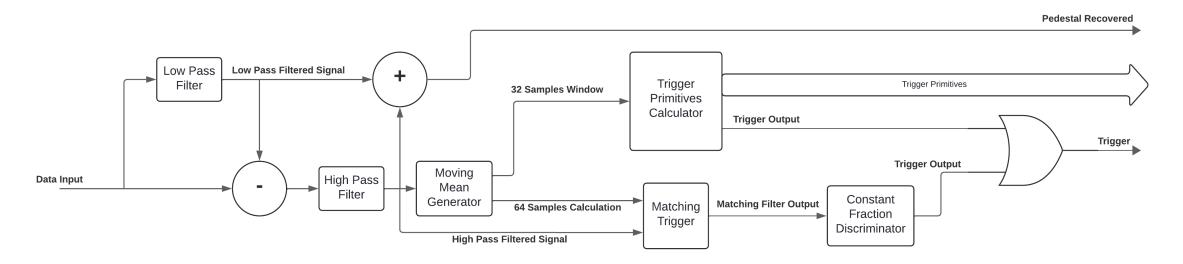
DAPHNE Self-trigger integration

D. Avila, E. Cristaldo, I. López de Rego August 15th, 2024

Content

- Timing issues:
 - How debug registers are read in the most updated commit in main.
 - Pipelining: Solution to timing issue.
- Self-trigger integration:
 - Module scheme.
 - New timing issues and solution.
 - Resources utilization.
- Self-trigger simulations:
 - Signals.
 - Trigger jitter.
- Conclusions.


Timing Issues

WNS(ns)	TNS (ns)	TNS Failing Endpoints	TNS Total Endpoints	WHS(ns)	THS (ns)
-2.918	-215.037	227	50945	0.031	0.0

- The latest commit [97823e7] does not met timing constraints. This issue is caused by the introduction of debug registers in the st40_top module, causing congestion due to the large amount of signals wire to the BIG mux in the ethernet data sender.
- Although the mentioned issue, the design was found to be stable during runs because the negative slack does not affect the core data senders and the integrity of data.
- When the self-trigger modules are included, the issue gets dramatically worse to the point where data integrity cannot be guaranteed.
- The issue was solved by pipelining and multiplexing the readout of these registers, but compatibility with the DAQ readout is lost. This solution was not merged yet and exist in a different branch.

Module Scheme

- The trigger aims to be a combination of all three strategies. Since the last results showed that the three modules have similar behaviours, we have decided to use ciemat's strategy in a parallel block to obtain the trigger primitives, avoiding problems with data synchronization since the trigger happens later using eia's matching trigger.
- However, we must keep in mind that by doing this, there is a possibility that sometimes triggers might
 happen for the matching trigger and not for the ciemat's trigger, therefore creating packet frames with no
 trigger primitives information, this must be addressed in following weeks.

4

New Timing Issues

Design Timin					
WNS(ns)	TNS(ns)	TNS Failing Endpoints	TNS Total Endpoints	WHS(ns)	THS(ns)
0.021	0.000	0	267060	0.012	0.000
All user speci	fied timing	constraints are met.			

- After the MUX and pipelining solution was placed, the merge of all three algorithms was done following this specific branch. However, new timing issues appeared.
- These timing problems were related to a register called packet_size_counter, located in the st40_top module. This register was unnnecessary in later commits on the main branch since the usage of the almost_full flag for the FIFOs was already guaranteeing the correct packet size, therefore it was commented and the timing issues were resolved.

Resources Utilization

+ Site Type	+ Used	+ Fixed	Prohibited	++ Available Util%
+	+	+4		++
Slice LUTs	110884	0	800	133800 82.87
LUT as Logic	94574	0	800	133800 70.68
LUT as Memory	16310	0	0	46200 35.30
LUT as Distributed RAM	18	0		
LUT as Shift Register	16292	0		
Slice Registers	108550	0	0	269200 40.32
Register as Flip Flop	108550	0	0	269200 40.32
Register as Latch	0	0	0	269200 0.00
F7 Muxes	5160	0	400	66900 7.71
F8 Muxes	1166	0	200	33450 3.49

Warning! LUT value is adjusted to account for LUT combining.

Site Type Use	d Fixed	Prohibited	Available	Util%
DSPs 520		0	740	70.27
DSP48E1 only 520				

- There was too much congestion in ٠ the initial design, this was produced by the matching trigger, that was previously optimized to not use DSPs.
- After reviewing the DSP usage by ٠ milano's filters, some DSPs were freed up in order to implement matching filter's strategy, and exchange its implementation, so most of EIA's strategy goes to the DSPs, while milano's filters use fabric.
- Congestion was reduced, and DSP ٠ usage is not as high, allowing room for more modules.

Main branch

Core module

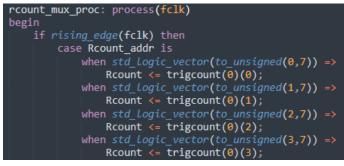
Tcount: out array_5x8x64_type; Pcount: out array_5x8x64_type; Scount: out std_logic_vector(63 downto 0);

DAPHNE top module –BIG mux

(X"0000000000000" & "00" & inmux_dout(5 downto 0)) when std_match(r (X"000000" & st_enable_reg) when std_match(rx_addr_reg, ST_ENABLE_AD Tcount(0)(0) when std_match(rx_addr_reg, TRIG0_COUNT_ADDR) else Tcount(0)(1) when std_match(rx_addr_reg, TRIG1_COUNT_ADDR) else Tcount(0)(2) when std_match(rx_addr_reg, TRIG2_COUNT_ADDR) else Tcount(0)(3) when std_match(rx_addr_reg, TRIG3_COUNT_ADDR) else Tcount(0)(4) when std_match(rx_addr_reg, TRIG4_COUNT_ADDR) else Tcount(0)(5) when std_match(rx_addr_reg, TRIG5_COUNT_ADDR) else Tcount(0)(6) when std_match(rx_addr_reg, TRIG5_COUNT_ADDR) else Tcount(0)(6) when std_match(rx_addr_reg, TRIG6_COUNT_ADDR) else Tcount(0)(7) when std_match(rx_addr_reg, TRIG7_COUNT_ADDR) else Tcount(1)(0) when std_match(rx_addr_reg, TRIG8_COUNT_ADDR) else Tcount(1)(1) when std_match(rx_addr_reg, TRIG9_COUNT_ADDR) else Tcount(1)(2) when std_match(rx_addr_reg, TRIG10_COUNT_ADDR) else

Timing Issues

Self-trigger branch


Core module

Rcount_addr: in std_logic_vector(6 downto 0); Rcount: out std_logic_vector(63 downto 0);

DAPHNE top module --BIG mux

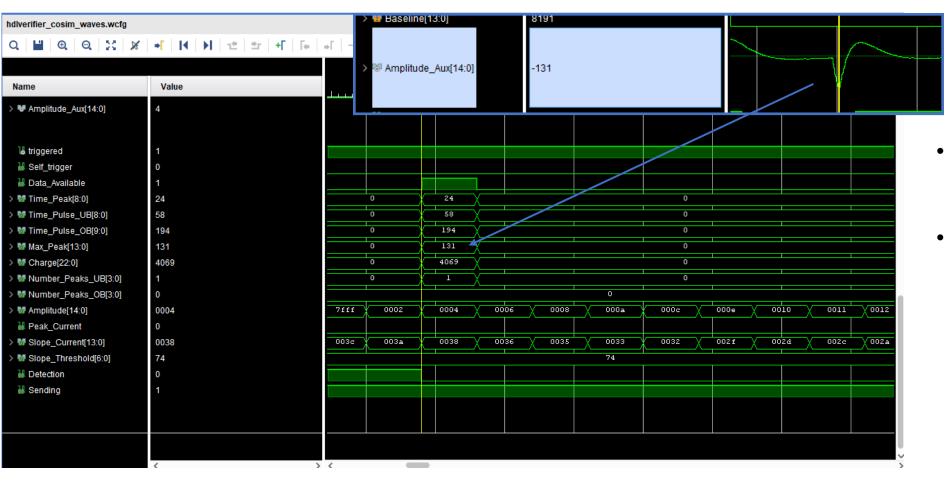
(X 00000 & 00 & Chreshold_XC_reg(41 downto 0)) when std_match(rx_addr_reg, THRESHOLD_XC_BASEADDR) else (X"000000000 & st_config_reg) when std_match(rx_addr_reg, ST_CONFIG_ADDR) else (X"00000000000000 & adhoc_reg(7 downto 0)) when std_match(rx_addr_reg, ST_ADHOC_BASEADDR) else (X"00000000000000 & outmode_reg(7 downto 0)) when std_match(rx_addr_reg, DAQ_OUTMODE_BASEADDR) else (X"00000000000000 & "00" & inmux_dout(5 downto 0)) when std_match(rx_addr_reg, CORE_INMUX_ADDR) else (X"0000000 & st_enable_reg) when std_match(rx_addr_reg, ST_ENABLE_ADDR) else (X"000000" & st_enable_reg) when std_match(rx_addr_reg, ST_ENABLE_ADDR) else Rcount reg when std_match(rx addr_reg, RCOUNT ADDR) else

St40_top – synchronous mux to read debug registers

- A synchronous mux was inserted in st40_top module. In this way, we reduced the amount of output signals in the core module. Only
 one signal is used to read the registers at the BIG mux.
- One way to restore compatibility with the DAQ is to include a simple state machine at DAPHNE2 top module that populates registers every 80 clock cycles (there are in total 80 registers). In this way, we can maintain the original read scheme.

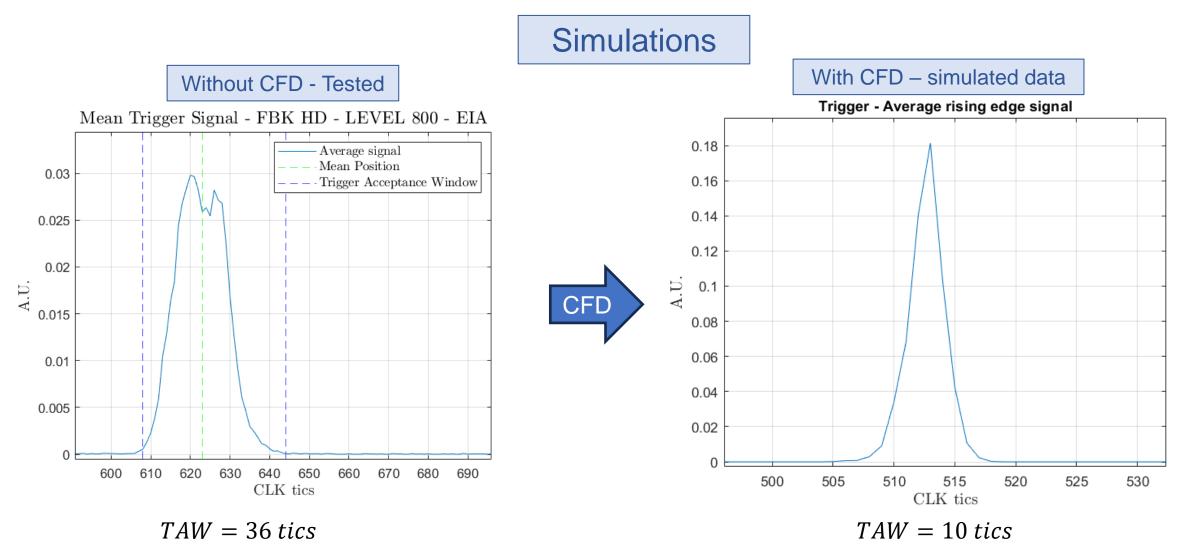
7

Simulations



- Simulations using FBK waveforms and RAW noise data at VGAIN 0,89V (corresponding to a Dynamic range of around 2000 P.E.) was done to confirm signals are as expected.
- Minor offset and undershoot corrections were introduced and the CFD signal was verified to perform as expected to generate the trigger signal.
- Jitter performance was improved. See following slides.

Simulations



- Trigger primitives calculation was verified using the simulation.
- The waves file produced by the HDL simulation, shown at the left, verifies that for instance, the peak value is correctly calculated by the trigger primitives calculator.

• The excess jitter issue observed during the self-trigger test at Milano-Bicocca in the EIA algorithm is mitigated by adding the CFD (constant fraction discriminator) stage.

TAW: Trigger Acceptance Window

Conclusions

- The three different algorithms were succesfully integrated:
 - Timing issues were resolved.
 - Incompatibility with DAQ register readout will be adressed.
- Correct behaviour was verified using HDL simulations.
- The CFD module created by milano allowed eia's matching trigger to have an even better jitter behaviour than before.
- Using the OR gate to generate the final trigger output will need more study, since ciemat's jitter behaviour was degraded between the first test and the second test.
- Once the imcompatibility issue is adressed, the design will be ready to be deployed. (More on this
 depends on experiment status, NP04 will not be available for testing, there is a small possibility of
 testing in NP02, else, we will start the migration to DAPHNE V3)

