More Independent CPV Measurements

Dual Calorimetry in Liquid Argon TPC

Xuyang Ning,¹ Wei Shi,² Chao Zhang,¹ Ciro Riccio,² and Jay Jo¹ ¹Brookhaven National Laboratory, Upton, NY, 11973, USA ²Stony Brook University, USA

> Wei Shi Stony Brook University

> > LBL Biweekly Aug 19

The Well-known Bias

- In standard OA, a lot of uncertainties come from Xsec systematics It is non-perturbative QCD! Many unknowns in neutrinonucleus interaction model, e.g., initial/final state interaction, nucleon correlation
 - Neutrino mixing parameters are constrained by fitting MC to data
 - Because cross section models are not incomplete, this results in model tuning, which could produce biased results
 - Standard OA performs many fake data studies to take this into account
- Tension b/t T2K & NOvA model biases may be at play!
- Important for DUNE to have as many as possible *independent* probes to neutrino oscillation

Multiple Roads to Neutrino CPV

DUNE Offers More Probes for CPV

Wide-band beam offers access to the 2nd oscillation peak An independent CPV measurement for free!

- Stronger CPV effect @2nd peak
 - Lower energy region: very different interaction processes and systematics
- Statistics is low (can't help much), but finer energy resolution could help resolve the 2nd peak structure
 - Offered by an enhanced light detection system in Phase II FD3

2nd CPV: arXiv

PHYS. REV. D 103, 116003 (2021)

Measuring CP independently with two oscillation peaks is a unique capability of DUNE - should not give up

A Genie-edepsim Study of GeV ν_{ρ} CC Events in a LAr Bath (200m long each dimension)

- **Energy deposition into charge (Q), light (L), detection threshold**
 - Applied realistic charge (dQ/dx) and light (dL/dx) yield from dE/dx
 - dQ: Birks model
 - dL = dE dQ
 - Used a benchmark mean light yield for FD3: 180 PE/MeV
 - Applied detection thresholds: 75 keV

Done in the context of Phase II FD3 APEX - many details omitted in this talk (see paper later)

$$.83 \times dE \times (1 - r)$$
$$= \frac{0.8}{1 + k_Q dE/dx}.$$

 $k_Q = 0.0972 \text{ g/MeV cm}^2$

Apply the light yield: 180PE/MeV, the number of PE for an event would be:

 $N_{PE} = L^{*}180$

Apply the fluctuation, the detected photon number would be:

 $N_{PE \ rand} = \text{Gaussian}(N_{PE}, \sqrt{N_{PE}})$ The detected energy in light:

 $L_{detected} = N_{PE_rand} * 180(PE/MeV)$ Combined with charge energy, the detected energy in total:

 $E_{LQ} = L_{detected} + Q$

2nd CPV: arxiv **GeV Event Reconstruction and Energy Resolution**

Five different methods of energy reconstruction

- Charge calorimetry: $E_v = Q_{tot}/0.58$
- Separate lepton/hadron : 2. $1/(1+\alpha)E_v = (Q_{lep} + Q_{\pi_0})/0.66 + (Q_{had})/0.37$
- Separate tracks/dots 3.

 $1/(1+\alpha)E_v = E_{track} + E_{\mu} + (Q_{lep_dots} + Q_{\pi_0_dots})/0.24$ $+(Q_{had dots})/0.57$

+ Individual PID; 4.

neutron, charged pion

5. Light: $E_v = L_{tot} / 0.42$

Resolution is rms/E;

- 1. Charge calorimetry: 10.5% @1GeV
- 2. Separate lepton/hadron: 11.2% @1GeV
- 3. Separate tracks/dots: 5.7% @1GeV
- 4. Individual PID: 5.5% @1GeV
- 5. Light: 8.2% @1GeV

Light Helps GeV Event Reconstruction

- Light offers an independent calorimetry with comparable or better energy resolution (8%@1GeV) to charge calorimetry
 - **Rely less on PID**, less affected by complicated hadronic system...

N.B. Adding light to charge only recovers the deposited E (with long tails...), but doesn't help reconstruction because resolution is dominated by PID -> not the case for lower E

Energy resolution	in	DUNE	VD	TDR
--------------------------	----	------	----	-----

Event hypothesis	Vertical Drift	Horizontal Drift
ν_{μ} CC with contained μ track	21%	18%
ν_{μ} CC with exiting μ track	19%	20%
$ u_e \; CC$	14%	13%

2nd CPV: arxiv

Resolution is rms/E;

- 1. Charge calorimetry: 10.5% @1GeV
- 2. Separate lepton/hadron: 11.2% @1GeV
- 3. Separate tracks/dots: 5.7% @1GeV
- 4. Individual PID: 5.5% @1GeV
- 5. Light: 8.2% @1GeV

Light Helps GeV Event Reconstruction

- Light info (timing, position, etc) helps charge PID and charge-based reconstruction
 - Identify μ/π decay/capture
 - Tag **neutron** propagation with timing (up to μs), n-capture tagging with PDS + TPC
 - Reconstruct track/event direction for background rejection

2nd CPV: arxiv

2nd CPV: arxiv How Light Helps Independent CPV Measurement

- Use new energy smearing for ν_e and $\bar{\nu}_e$ signal in DUNE GLoBES
 - Main contribution to the CP sensitivity is from 1st oscillation peak insensitive to energy resolution
- Better energy resolution will improve the CPV significance at 2nd oscillation peak (M1 \rightarrow M2 \rightarrow M3)
 - Light assisted charge PID helps improve energy resolution
- Light calorimetry alone provides another independent CPV
 measurement

2nd CPV: arxiv How Light Helps Independent CPV Measurement

- Use new energy smearing for ν_e and $\bar{\nu}_e$ signal in DUNE GLoBES
 - Main contribution to the CP sensitivity is from 1st oscillation peak insensitive to energy resolution
- Better energy resolution will improve the CPV significance at 2nd oscillation peak (M1 \rightarrow M2 \rightarrow M3)
 - Light assisted charge PID helps improve energy resolution
- Light calorimetry alone provides another independent CPV measurement
- Better resolution improve the contribution from spectra shape

Multiple Roads to Neutrino CPV

Pure light calorimetry

New CPV Analyses and Plans

- Propose new CPV analyses
 - One analysis offers an independent probe expect comparable sensitivity to main OA
 - - 2nd oscillation peak analysis
 - Shape-only analysis: free normalization/shape-only chi2
- Need to develop light sim & reco
 - More detailed light simulation
 - Further develop light-assisted event reconstruction
 - Develop good energy estimators based on light yield map for GeV neutrino events
- Possible synergy with standard OA or PRISM analysis
 - Linear combination of PRISM data can produce the 2nd osc peak well
 - Need standard OA inputs

• Light calorimetry only analysis @ full oscillation spectrum (1st & 2nd osc peaks) • Two analyses where sensitivity improves with better E resolution via light-assisted charge PID