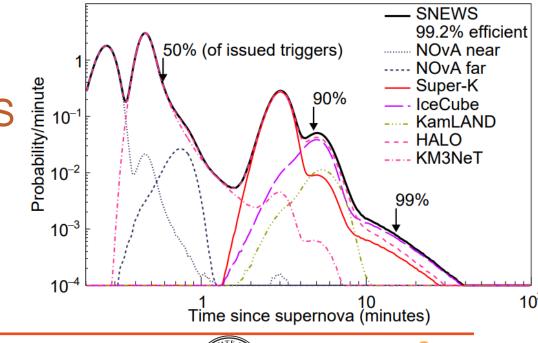
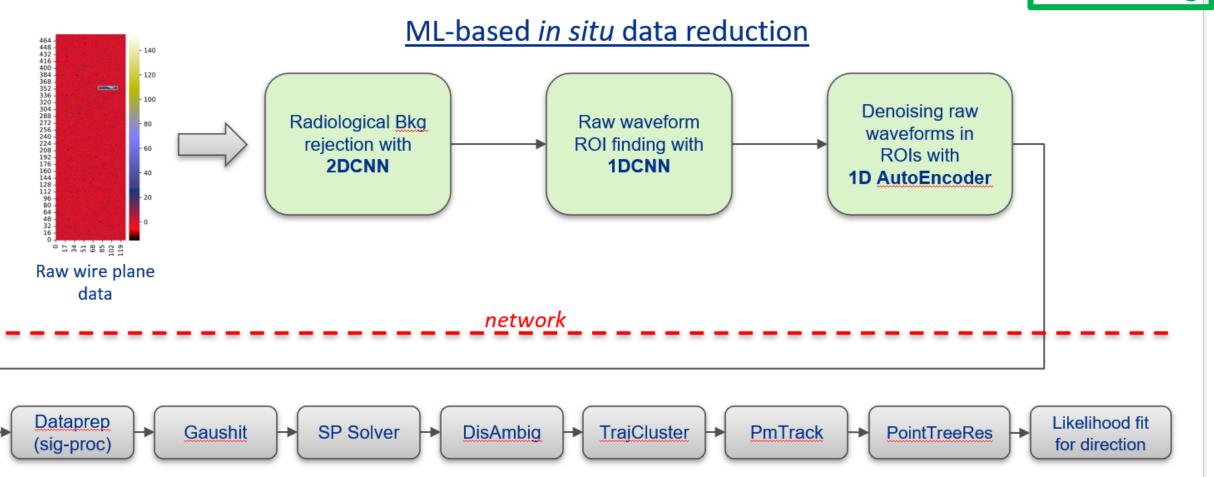
Computing needs for low-energy physics


Dan Pershey (FSU) Sep 20, 2024

Problem 1: supernova data rates


- The raw data rate for each FD module is \approx 1.5 TB/s
- A 100-s SN trigger transfers data out of the mine at 100 Gb/s
 - 4 x 1.5 TB/s x 100 s / (100 Gb/s) = <u>13 hrs!!!</u>
 - DAQ requirement is 24 hrs
 - Must supply pointing info within a few minutes to contribute to SNEWS
- See Mike Wang's talk at May collaboration meeting <u>on indico</u>

Computing for low-energy physics – 2024/9/20

Strategy for fast pointing determination: algorithms

Slide from

🛟 Fermilab

Mike Wang

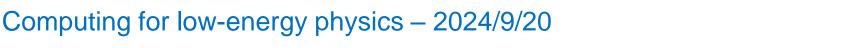
"Offline-like" reconstruction and pointing analysis

Scope of the problem

 DUNE SN physics is only tractable with ML processing underground

 Unique for software development

	Raw output processing	ML-processing underground
Total data rate	48 TB	0.000151 TB
Transfer time	13 hrs	12 ms
Processing time	88 hrs	0.06 hrs (3.5 min)


• For analyzers, we'll need convenient access for online-type computing environments (FPGA + FE electronics)

Computing for low-energy physics – 2024/9/20

Problem 2: resources for background simulation

- Active ticket for LE MC production: ~ 3e6 events in 1x8x6
 - Sim time: $3e6 \times (2.25 \text{ ms}) \times (24/200) = (15 \text{ hrs}) = 2e-5 \text{ nominal exp.}$
 - With using mature tricks to simulate only interesting events (i.e. events with a true neutron capture in them) improved to 2e-3
 - Need orders of magnitude to fully understand bkg combinatorics
 - Sim/data overlays not possible here signal contaminates data
- Any ideas?

