
GNN fit tests

1 Introduction

A GNN has been used to generate predictions of the process underlying a series
of ProtoDUNE events. Identification of the count of processes will be inferred by
comparing the distribution of GNN scores from many events against templates.
This is an alternative to event by event classification using the maximum GNN
score.

These fits are performed using the iminuit python library, using a template
likelihood method developed by Dembinski and Abdelmotteleb. To demonstrate
this method is feasible, the robustness of the fit must be demonstrated to give
confidence that sensible results will be returned when the method is applied to
data.

This summary begins by describing robustness as the chosen goal, including
the statistics that will be used to measure this. It then describes the methods
available for testing the fit. Finally the tests to be carried out are listed.

2 Robustness

The Wikipedia introduction to Robust statistics states:

Robust statistics seek to provide methods that emulate popular sta-
tistical methods, but are not unduly affected by outliers or other
small departures from model assumptions.

It is important to note that this definition applies to “statstic”s. This refers
to a statistic, N , as the result of a function applied to a set of measurements
X1, X2, . . . , XN . I.e. T is a statistic if N = N(X1, X2, . . . , XN ).

2.1 Template fit robustness

The statistics for which we which to demonstrate robustness are:

N1, N2, N3, N4 = F (X1, X2, . . . , XN ;T1, T2, . . . , TN ) (1)

The statistics of interest N1, N2, N3, N4 correspond to the number of absorption,
charge exchange, single pion production, and multiple pion production events
which generated the data X1, X2, . . . , XN . The function F represents the tem-
plate fit function used. The template data T1, T2, . . . , TN is shown explicitly as
a separate input to the fit.

Following the definition of robustness from section 2, our tests should ensure
that the fit has minimal dependence on the underlying assumptions, or outliers.
In the case of a template fit, the templates themselves represent the underlying
assumptions of the fit. To conclude the fit is robust, we thus require “the fit
achieves the same performance over a range of modifications to the template”.

The consideration above leads itself to the testing paradigm of explicitly
editing the template (changing the underlying assumptions), and confirming
the output statistics remain consistent. An exception to this is the outlier test,
which must involve injection of outlier events into the data set.
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Adjustment the statistics by considering not Ni, but rather Ni−N true
i allows

us to make small variations in the true number of data events. This new statistic
shall be called the offset statistic. According to the paradigm, which should keep
the underlying data distribution the same, yet this new statistic allows sampling
this data distribution whilst keeping the statistic comparable between samples.
The benefit is to allow sampling the statistic many times to find a distribution
of robustness estimators to improve understanding.

A final benefit of this paradigm is to explicitly separate from a method for
estimating systematic uncertainties, which can be assessed by making changes
to the underlying data distribution, without changing the template.

2.2 Robustness measurements

In the paradigm described in section 2.1, the test of robustness is that the centre
of the distribution of offset statistics remains consistent as some underlying
assumption is changed. This can be quantified by taking a gradient of a plot
of the offset statistic values vs. the magnitude of change of the assumption.
No decision has yet been made on what limit this gradient should have to be
considered robust.

To improve understanding, additional measurements will be created to offer
alternative view of the performance of the fit.

� A pull statistic will be tested by dividing the offset statistic with the
corresponding error output by the fit.

� The χ2 fit value between the fitted templates and the data will be returned
to indicate the overall performance of the fit.

� The ratio of likelihoods from the template fit for the true data distribution
over the minimum likelihood.

� The ratio of likelihoods from the template fit for the template data frac-
tions (normalised to the number of data events) over the minimum likeli-
hood. Note that this value should not be robust. If it is robust, it implies
the fit is tracking the template (i.e. underlying assumptions).

3 Tools

The core tool available is a template/data generator. This is a class implemented
in python which is supplied a set of GNN predictions and corresponding true
regions for each of the template and data. The created instance allows for sam-
pling and weighting of the parameters as defined by some sampling parameters.
The instance begins by creating a 4D correlated histogram of true counts Ti,j .
If the true counts are known, this information is kept, indexed as i. Index j
runs over the (4D) with a supplied number of bins per dimension, b. Thus index
j runs from 1 to b4.

Sampling probabilities, pi and weights, wi may be passed for all events, or
for each region individually. These represent the expected fraction/weighting of
events, respectively. Both of these parameters may be distributed or fixed.

If distributed, the sampling probability is used in a binomial distribution to
drawn the number of events used. The number of events Ni,j used from process
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i in bin j, given a true binned count Ti,j : Ni,j Binom(Ti,j , pi). If undistributed,
this is simply Ti,j : Ni,j = Ti,j × pi.

If distributed, the weights are generated by a gamma function with shape
Ni,j×wi, noting that the sum of gamma distributions is also gamma distributed.
Thus the count in a bin Ci,j , if distributed, is: Ci,j Gamma(wiNi,j , 1). If
undistributed, this is simply Ci,j = Ni,j × wi.

To generate uncorrelated data, four 1D histograms are generated by sum-
ming over all by one of the 4D histogram’s axis, with the axis not summed over
as the axis is interest.

4 Tests

As outlined in section 2.1, the template represents the underlying assumptions.
The tests should cover a range of possible discrepancies that may appear when
considering real ProtoDUNE data.

The following potential discrepancies are considered:

� The template contains a different fraction of true processes than exist in
data.

� The GNN score distributions in the template do not follow the distribu-
tions found in data (e.g. if the absorption scores in data are more likely
to be lower than those in the template).

� Outliers do not dramatically affect the results.

The following list aims to test all the potential discrepancies:

1. Random fluctuation - randomly sample the templates, but without sys-
tematic changes.

2. Initial fit predictions - change the initial parameter estimations going into
the fit.

3. Re-weighted process fractions - change the relative amount of underlying
processes in the template.

4. GNN score drift - apply some weighting on the distribution of scores as
a function of GNN score bin number, e.g. a linear increase in weighting
from the lowest to highest bin.

5. Outliers - intentionally add extra entries into the data without similar
template predictions.

6. Minimum required statistics - reducing the fraction of data in the fit until
failure.
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