The ICEBERG Test Stand for DUNE Cold Electronics Development

Alejandro Yankelevich for the DUNE Collaboration

NuFact 2024, Argonne National Laboratory

WG 6: Detectors

September 19, 2024

DUNE

 1300km baseline neutrino oscillation experiment

 17kt far detector LArTPCs modules

ProtoDUNE

- Two LArTPC detectors located in CERN neutrino platform
 - Horizontal drift
 - Vertical drift
- 8m cubic cryostats (inner dimensions) with 0.77kt LAr
- Take cosmic data and beam data from dedicated beam lines from CERN's Super Proton Synchrotron
- HD started second run in May

ICEBERG

- Integrated Cryostat and Electronics Built for Experimental Research Goals
- Test LArTPC with two 1.15m × 1m × 0.3m drift volumes.

 Two scintillator bars outside of cryostat for coincident triggering on cosmics traveling parallel to wires.

Field Cage

Scintillator Bar

Anode Plane Assembly

- 1280 channels (1/2 of full DUNE APA).
- APA in middle of detector, cathodes at ends.

DUNE APA schematic and picture. ICEBERG APA size in red.

X-ARAPUCA

- ICEBERG APA has two slots to test horizontal drift photodetectors.
- However, currently testing vertical drift style X-ARAPUCA.
- Testing power over fiber mode necessary to place detector on DUNE VD cathode at -300kV (see Diana's & Sabrina's talks tomorrow)

Goals

- Test latest versions of DUNE cold electronics.
- Test vertical-drift style X-ARAPUCA photodetector.
- Test new detector safety system.
- Advise DUNE/ProtoDUNE on optimal choice of electronics settings.
- Develop Al-based calibration method using 39Ar decay and Michel electrons from cosmic triggers.

Electronics Testing

- Front-end mother boards (FEMBs) for TPC readout consist of amplifier, digitizer, and transmitter chips.
- Newest versions tested in LN₂ after final cabling.

Commissioning

Cold Electronics Settings

- Noise data taken under various electronics settings to determine which gives best S/N ratio.
 - Voltage to each chip
 - Amplifier gain
 - Amplifier shaping time
 - Digitizer baseline

Average FFT of all channels under various gain settings.

Varying Power Settings

 Applying higher voltage reduces 25kHz noise seen in both ICEBERG and ProtoDUNE APAs.

Average FFT of all channels under different power settings: recommend 3.0V/3.0V/3.2V and higher 4.0V/4.0V/4.0V. Left shows ICEBERG APA. Right shows one ProtoDUNE APA.

Absolute Calibration Scale

- Looking for absolute calibration method for TPC electronics
 - 39Ar decay for O(~100keV)
 - Michel electrons for O(~10MeV)
- Michel electron energy scale calibration with ProtoDUNE Run I previously demonstrated [1]

Energy spectrum of ³⁹Ar and ⁸⁵Kr measured at WARP experiment [2].

Candidate ProtoDUNE Michel electron [1].

Reco vs true Michel electron energy with calibration based on theoretical Michel spectrum [1].

^{2.} WARP Collaboration. Measurement of the specific activity of ³⁹Ar in natural argon. Nucl. Instrum. Methods Phys. Res. A 574, 83-88.

^{1.} DUNE Collaboration. *Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector.* Phys. Rev. D 107, 092012.

ν-OnEdge Al

R&D in progress to implement AI-based identification of calibration events and high-level particle classification based on "trigger primitives".

Summary

- ICEBERG restarted since May with upgraded cold electronics, current DAQ software, and VD photodetector.
- Primarily taking cosmics data; also running noise tests and with external pulses.
- Tests helped advise DUNE/ProtoDUNE on ideal gain, baseline, power setting, etc.
- Working on using ICEBERG DAQ to develop online Albased identification of calibration events and PID.

