
Graph Neural Networks for pion event 

classification

Dennis Lindebaum

ProtoDUNE-SP Hadron Analysis

14.08.24



Content
• Context        (3-6)

• ProtoDUNE events as graphs  (7)

• What data?       (10)

• Reconstruction effects    (11)

• Back-tracked performance   (12)

• Reconstructed performance  (13-14)

• Use in analysis      (15)

• Checks        (16-17)

• Fit         (18-21)

• Summary       (22)

14.08.24 Dennis Lindebaum | GNNs for pion event classification2



Context - what processes?
• 3GeV ProtoDUNE-SP pion beam data

• Measuring π+ - Ar cross-sections

• We consider 4 possible interaction channels

- Absorption: π+ + Ar → X

- Charge exchange: π+ + Ar → π0 + X

- Single pion production: π+ + Ar → π± + X

- Multiple pion production: π+ + Ar → A π± + B π0 + X,
               A+B ≥ 2
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π±s π0s

Abs. 0 0

CEx. 0 1

1 pi 1 0

Multi. otherwise

Note this combines:
Quasi elastic scattering:    π+ + Ar → π+ + X
Double charge exchange: π+ + Ar → π– + X
(can’t distinguish π+ / π–)
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Context - previous work
• Using analysis framework developed by Shyam Bhuller in 

Bristol.

- Find his most recent talk here: ProtoDUNE-SP Hadron Analysis Bi-

Weekly Meeting (May 1, 2024) · INDICO-FNAL (Indico)

- This work – use a GNN to perform process selection.

- Other aspects unchanged (selection, energy slice, unfolding, etc.).

• Copies the beam selection used by Shyam, not yet done any 

3GeV optimisation.

- Not yet implemented the fiducial cut on first 30cm.

- Not yet made a cut on low energy pions.
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https://indico.fnal.gov/event/64523/
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Context - why graphs?
• Simple cuts-based method performs poorly.

• Identify PFOs as particles using cuts on the PFO properties.

• Count the identified PFOs to classify the event.
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- x-axis is classification

predicted by a method

- y-axis is the true

classification (label)

- Colour shows purity:

n_cell / sum_column

- Percentage shows

efficiency:

n_cell / sum_row
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Context - why graphs?
• We don’t know how many particles will appear in an event!

• A strategy is required to deal with an unknown number of inputs.

• Graph Neural Networks apply the same function all connected 

points, then perform aggregation to reduce to a known size.
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ProtoDUNE events as graphs
• Convert events to heterogeneous, undirected graph

Vertices contain 
kinematic data for 
particle identification

Edges contain geometric 
information to 
determine relationships

Multiple types 
of vertex

Edges are the same 
in both directions 
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Not looking at hits
Instead, properties calculated 
post-reconstruction
• Track score
• Pion/proton χ2 fits
• Etc.
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What data?
• Three levels of data used to test performance:

1. Monte-Carlo (MC):

• Contains all particles from the Geant4 generator.

• Takes truth values (i.e. particle relations, particle species) from Geant4 

particles.

• GNN achieves perfect performance.

2. Back-tracked (BT) (aka. cheated):

• Contains only reconstructed objects (generated by pandora clustering).

• Relates reco. PFOs to MC particles by tracking the proportion deposited 

energy, take truth information from the related MC particles

3. Reconstructed data (reco.):

• Reconstructed objects with reconstructed properties
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Reconstruction effects
• Back-tracked data is affected by reconstruction

efficiency.

• PFOs are only created where there

is energy deposition in the

detector AND the PFO

clustering algorithms find

this energy.

- One of the failure modes is

clustering hits from multiple

particles as a single PFO.

- Fewer PFOs per event than

Monte-Carlo truth.
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1 π± incorrectly split 
into multiple PFOs
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Back-tracked performance
• Can apply weightings to prefer efficiency over purity

- Real test – which will produce lower uncertainty in the analysis
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MC classified regions as true process Reco. classified regions as true process
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Reconstructed performance
• Performance further diminished using reconstructed properties

- Biggest culprit seems to be π± identification.

+ 1
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MC classified regions as true process Reco. classified regions as true process
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Use in analysis
• Instead of classifying individual events, fit the measured score 

distributions with true classification MC template distributions.
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Distribution of GNN scores per channel across all test events
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Fit - templates
• Split half the MC data as a template (actual template have 4D 

correlation)
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MC 
classified 

single pion 
production

MC 
classified 

absorption

MC 
classified 
multi. pion 
production

MC 
classified 
charge 
exchange
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Fit – Minuit template fit
• The fit uses (python) Minuit’s template fit, using Dembinski and 

Abdelmotteleb method.

• Data, 𝐷𝑐𝑖
: count in bin 𝑖 of channel 𝑐

- 𝑐 ∈ GNN score channels (abs., CEx., single pion, multi. pion)

- 𝑖 ∈ bin indices

• Template, 𝑡𝑐𝑖,𝑟: count in bin 𝑐𝑖 given true event region 𝑟

- 𝑟 ∈ Regions (abs., CEx., single pion, multi. pion)

• A full template, 𝑇𝑐𝑖
(𝜇𝑟) is constructed as:

- 𝑇𝑐𝑖
(𝜇𝑟) = σ𝑟 𝜇𝑟

𝑡𝑐𝑖,𝑟

σ𝑐𝑖
𝑡𝑐𝑖,𝑟

- With 𝜇𝑟 is parameter to be fit, the actual count of each region.

• The fit maximises the binned likelihood ℒ ห𝐷𝑐𝑖
𝑇𝑐𝑖

𝜇𝑟 , accounting for 

the template nature of the fit to find 𝜇𝑟.
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https://scikit-hep.org/iminuit/notebooks/template_fits.html
https://doi.org/10.1140/epjc/s10052-022-11019-z


Fit – Minuit template fit
• Use Minuit to fit the remaining MC from the templates
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Single pion scoresAbsorption scores Multi. pion scoresCharge exchange scores

Absorption Charge 

exchange

Single pion 

production

Multiple pion 

production

True count 1652 1244 6120 17305

Fit count 1602.14 1166.81 6325.83 17225.99

Fit error 73.10 170.20 369.92 449.06
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Checks – Pulls
• Want to check the robustness of the fit:

- Can it recover the actual “data” process fractions, even when the 

templates are mismodelled?

• The MC data

is shuffled,

split into data

/templates

• Some template

property may

be edited.

• Shown:

10,000 pulls
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pull =
fit pred. −  true count

fit uncertainty



Checks – Data statistics
• Are the pulls consistent as the number of events in the data 

changes?

• “Relative data fraction” runs from 500 at 0.04 to 25,000 at 1.0

• For each test: 2,000 pulls
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Checks – Template statistics
• Are the pulls consistent as the number of events in the template 

changes?

• “Relative data fraction” runs from 2,500 at 0.1 to 25,000 at 1.0

• For each test: 2,000 pulls

18 14.08.24 Dennis Lindebaum | GNNs for pion event classification



Checks – Template process fracs.
• If the fraction of processes (abs., cex. etc.) change in the 

template, does the fit still follow the data.

• 12,500 data, 15,000 baseline template, weighted 7,500 - 22,500

• A bad method would

show a positive

gradient

(under-estimate when

template has a deficit)
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Checks – Template process fracs.
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Checks – Comments
• The single/multiple pion production channels appear to have 

slight dependency on the template fractions.

• Charge exchange struggles with low statistics.

• Check still to do:

- “Smearing” the templates (shuffling the template bin occupancies)

- Reweight the template as a function of:

• Beam particle energy  (energy correlations)

• Number of PFOs in event (reconstruction effects)

- Make tweaks to the MC before running the GNN.
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Summary

• Graph neural networks are

appropriate for data with an

unknown number of inputs.

• Extra losses give extra handles to

understand GNN performance.

• Per event classification is mediocre.

• Fitting score distributions looks

promising for improving accuracy.
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PD-I 
events

Graph

Distribution 
fits
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Back-up
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Graph Neural Networks
• PFO vertex message passing:

- Collect data from a

neighbouring PFO

- Apply a dense layer

- Do this for all

connected PFOs

PFO Data Edge Data PFO Data

EdgeConnected PFO

SourcePFO

Concat. 
data

Dense layer

Message

Message data

Messages…

Source PFO
dataUsing the tensorflow-

gnn python package. 

arXiv:2207.03522
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Graph Neural Networks
• PFO vertex message passing:

- …

- Aggregate neighbours

(multiple aggregators)

- Concatenate

aggregations

- Apply a dense layer

- Update state

Source PFO

Initial PFO 

data

Aggregate

(i.e. max)

Aggregate

(i.e. mean)
+

Dense layer

New PFO 

state
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Message

Message

Messages…

Message

Aggregate

(…)

Concatenate

Message data

Principle Neighbour 
Aggregation: 
arXiv:2004.05718
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Monte-Carlo performance
• Perfect (MC) information can achieve perfect

classification (1 misclassification here).

• With MC data, this can

event be achieved

without any message

passing steps.

- Look once at the PFOs

surrounding the beam.

- Don’t have to infer any

information.

3: Multi-pion production
2: Single pion production
1: Charge exchange
0: Absorption
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Example graph
• Example Monte-Carlo event graph.

• Can we determine the classification?

Share a mother particle
No shared mother
Beam related
Not beam related

Photon

OtherPhoton

Muon

Proton
Pion

Probably a π0 

π± from 
beam

1 π0 and 1 π± :

This is multiple 

pion production
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π±s π0s

Abs. 0 0

CEx. 0 1

1 pi 1 0

Multi. otherwise
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Interpretability
• Add an output to the network which aims to count the π±/π0 s.

• These are trained with a regression loss (mean absolute error) 

against the true π±/π0 count in the event.

• Can this help us understand the network’s weaknesses
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Interpretability
• Recall the trained model had a misclassified event.

• Which event is this in the particle

counts?
This is the misclassified event!

This event was already 
multiple pion production
(the number of pions is 
already >2, so an additional 
pion doesn’t change region)

29

3: Multi-pion production
2: Single pion production
1: Charge exchange
0: Absorption
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Network structure
• Message passing step:

1. PFO update (update PFO states from neighbour PFOs)

2. Neighbour update (update edges based on connected PFOs)

3. Beam collection (update the beam vertex with PFO information)

1. Set initial state (apply a dense layer to input features)

2. Beam collection

3. Message passing ( x2 )

4. Readout beam state (get the data in the beam vertex)

5. Classifier layers (dense layers to make a 4-component output)

- Loss: focal categorical crossentropy
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Reconstructed performance
• Primary failure modes seem to be:

- Bad π± classification

- Distinguishing 1 and >1 particles present

31

Pion identification on graph nodes

Reconstructed pion count 
predicted per event
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Checks - data
• The predictions of π± / π0 counts are separate outputs from the 

same GNN which performs classification.

• Can investigate similarity by comparing these outputs in data 

and MC – will the templates be valid?

- Want to find a quantitive test…
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Checks - energy dependance
• The templates should not depend on the energy of the 

interaction.

33

All MC 
single pion 

scores

All MC 
absorption 

scores

All MC 
multi. pion 
scores

All MC 
charge 
exchange
scores
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