Global Reconstruction Update

Peter Lane Illinois Institute of Technology MICE Collaboration Meeting 36

Outline

- Background/Prior Progress
- Current Progress
- Drift Reconstruction Results
- Conclusions
- Next Steps

Background: Polynomial Transfer Maps

Simulated

- Expand initial P.S.V. (t, E, x, Px, y, Py) of test particles into terms of a polynomial: A = (1, t, ..., t², tE, ..., py²);
- B are the matrices formed from the P.S.V. at detector centers
- Solve the matrix equation $\mathbf{B} = \mathbf{A} \mathbf{C}^{\mathsf{T}} \rightarrow \mathbf{C}^{\mathsf{T}} = (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{B}$
 - For N linearly independent inputs, N = # polynomial terms
- C is a coefficient matrix for polynomials that describe the evolution of the phase space coordinates
 - Transport phase space vectors with b = C a

Background: Track Fitting Algorithm

- Find initial phase space vector that minimizes χ² -- the sum of the squares of the differences between the propagated guesses (Outputs) and the detector hits (Inputs).
 - weighted by the detectors' measurement uncertainties

Progress Prior to CM36: Initial Fitting Tests

- Tested with moderate success on MC truth and smeared MC inputs
 - MC truth was a check on the fitting algorithm
 - Smeared MC simulated detector resolutions
 - Drift and single quad configurations
 - Verified the linear order transfer maps using COSY INFINITY transfer matrices
 - CM34 track fitting output residuals plots

Progress Prior to CM36: Excerpt of CM34 Track Fitting Residual Plots

MC Truth

Progress Prior to CM36: Framework and Data Structure

- Developed software framework for plugging in different optics models and fitting algorithms
 - Optics models: models used for generating transfer maps
 - Polynomial Approx., Runge-Kutta
 - Fitting Algorithms: χ² minimization, Kalman Filter
- Created flexible, simple to use data structure capable of storing complicated triggers and event topologies if needed.

Current Progress

Using reconstructed detector data

("space points") instead of smeared MC for track fitting inputs

- Using the new global recon data structure
- Verified track fitting inputs using a drift configuration of TOF0 and TOF1
- Improved/fixed track fitting algorithm
- Compared track fit input (space points) residuals with output (reconstruction) residuals for a 1,000 particle run

2 m Drift: TOF0 to TOF1

beam starts 1 meter upstream of TOF0 2 meters between the centers of TOF0 and TOF1

9

Geometry and Longitudinal Beam Definition

- Fire 1000 muons 1m upstream of TOF0
 - No decays. Mean energy loss only. Air.
- 2m drift between centers of TOF0 and TOF1
 - 1.950 m of air in between two 25 mm thick TOF scintillator planes
- Longitudinal Parameters:
 - Gaussian distribution in Energy and Pz
 - Mean Pz: 200. MeV/c (Mean E: ~226. MeV)
 - σ_p : 25 MeV/c (MAUS default)

Transverse Beam Definition

- Transverse Parameters:
 - Gaussian x, Px, y, Py with means = 0
 - RMS Emittance (x & y): 0.1 π mm·rad
 - β₀ (x & y): 1000. mm / rad
 - α₀ (x & y): 2.

Initial dist. chosen to light up all TOF1 slabs

- $\sigma_x = 10$ mm (arbitrary) and
- $3 \cdot \sigma_{x'}$ (99.73% of the particles) = $x'_{max} = \Delta x / \Delta z$

Caveats for Residuals

- Residuals: difference of p.s.v. and MC truth
- MC hits are registered by Geant4 when they enter the scintillating slab volume (upstream edge of TOF plane)
 - Use only plane 1 hit since z is at the center of the detector (same as space point z)
- Uncalibrated MC time stamps
 - MC t₀ is beam creation
 - Space point t₀ is calibrated trigger time
 - Slight offset in the mean of the input time residuals

Muon Drift Track Fitting Input

- TOF reconstruction gives time and pixel (ID of horiz. & vert. slabs that were hit)
 - pixel gives rough x & y
- Note: 8.5% reduction in particles from
 - Rejection of events with multiple plane hits (3.2%)
 - Hits on TOF pixels without valid trigger calibration (5.3%)
- Energy & momenta set to reference particle's since they are unknown
- Generate residuals with MC truth to verify inputs are sane

Muon Drift Track Fitting Output

- Using linear order polynomial transfer maps
- Generate best fit track points with MC truth

Input TOF 0 Input/Output Residuals 1

Input TOF 0 Input/Output Residuals 2

Input TOF 1 Input/Output Residuals 1

Input TOF 1 Input/Output Residuals 2

Conclusions

- TOF inputs verified
 - Time residual RMS are within TOF resolution
 - Time residual mean offset is understood
 - x/y residual RMS are close to transverse spacial resolution of TOF0/TOF1 slabs
- Drift track fitting working well
 - RMS are improved overall
 - E & P RMS are close to estimated resolutions
 - Energy mean is much better, but still significantly different from zero
 - t₀ compensation seems to help

Next Steps

- Add TOF2
- Add magnets
 - quads (focusing)
 - solenoid (transverse momentum)
 - dipole (longitudinal momentum)
- Add tracker stations
 - PID possible once reconstruction available
- Add other materials (Ckov, absorber, etc...)

End

11 6

Extra Slides

5. A BAR S

Transfer Map Generation

- Calculate C from matrix of polynomial vector inputs (A) and a matrix of p.s.v. outputs (B)
 - Solve the matrix equation $B = A C^{T}$
- The Moore-Penrose Pseudoinverse of A is the least squares solution
- The MPP takes the simple form (A^T A)⁻¹ A^T if there are N linearly independent inputs
 - N = number of polynomial terms