roduction The Assumptions Initial Results Working Results The Futur

Field Emissions and Dark Current Simulations MICE CM36 - IIT

Christopher Hunt

June 18, 2013

Using FES (Field Emissions Simulation) V1.2

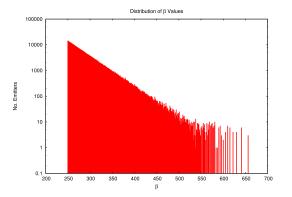
Field Emissions and X-Rays

- Very high field gradients induce electron quantum tunnelling accross metal surface.
- Local imperfections magnify electric field → greater electron current.
- Fowler and Nordheim described this:

$$j(E) = \frac{A\beta^2 E^2}{\phi} e^{-B\frac{\phi^{3/2}}{\beta E}} \tag{1}$$

• Field emitted electrons will enevitably hit something: Trackers, people, cavities. . .

Assumptions

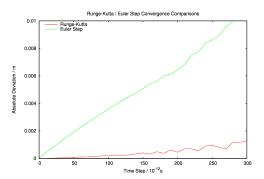

- Cavity Geometry
 - Ideal pillbox shaped cavities
 - No Be windows
 - Emitters on found on flat faces of cavity
- Field Simulation
 - Perfect field simulation (TM010 Mode)
 - No edge effects at cavity iris
 - Solenoid Fields not currently supported
- Particles
 - Produced at rest
 - Space charge negligible
 - Emitters have identicle area
 - No integrated X-Ray simulation
 - No dE/dx simulated

roduction The Assumptions Initial Results Working Results The Futur

The Code

Very rough estimate for emitter distributions used (Moretti et al). More data needed to improve emitter distribution.

Distribution of β for emitters



The Code

XML File used to allow runtime varying of all simulation parameters.

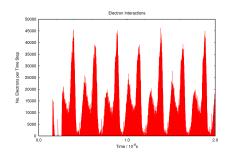
Convergence of Runge-Kutta & Euler Step methods studied.

Radial deviation of particle-cavity interaction point with respect to step size.

Geometry

Simple cavity design used for testing. NOT a MICE Cavity!

Radius | 0.5m Length | 0.4m Iris Radius | 5cm Mode | TM010 Frequency | 201.25 MHz Gradient | 8.0MV/m


RED: Electron-Cavity Interaction Points
GREEN: Electrons Leaving the Simulation Volume

BLUE: Example Electron Tracks

Rates and Currents

Time dependendent results. Interaction and production rates as a function of time

All Electronal Indexection Rate

120000

All Electronal Indexection Rate

Electronal Producted
Electronal Contained

40000

20000

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

1.0.0

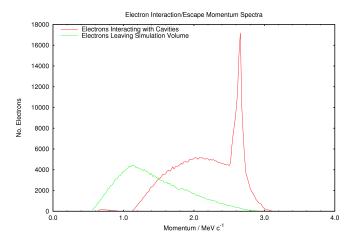
1.0.

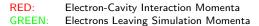
No. Electron-Cavity Interactions per Time Step

RED:

GREEN:

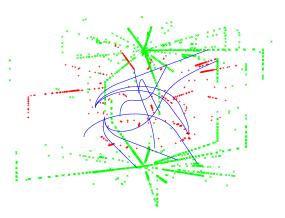
No. Electrons Produced per


Time Step


No. Electrons Contianed with

the Simulation

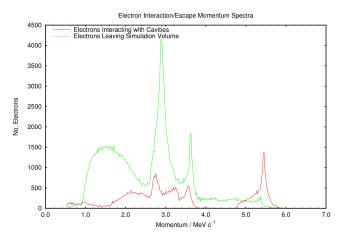
Spectra



roduction The Assumptions Initial Results Working Results The Futur

Two Cavity Geometry

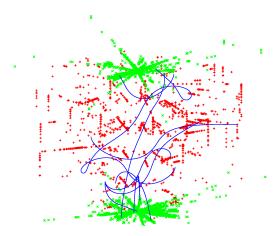
RED: Electron-Cavity Interactions


GREEN: Electrons Leaving Simulation Volume

BLUE: Example Electron Tracks

Two Cavity Spectra

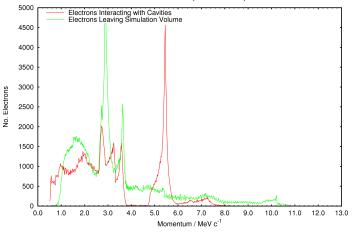
More cavities introduces more features to the spectra. There a more faces to hit!



RED: Electron-Cavity Interaction Momenta
GREEN: Electrons Leaving Simulation Momenta

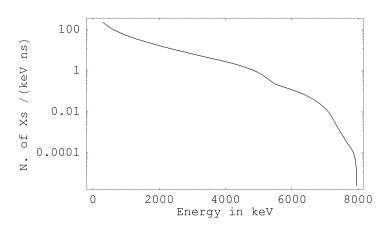
Initial Results The Assumptions Working Results

Four Cavity Geometry


RED: **Electron-Cavity Interactions** GREEN: Electrons Leaving Simulation Volume Example Electron Tracks

BLUE:

Four Cavity Spectra


RED: Electron-Cavity Interaction Momenta
GREEN: Electrons Leaving Simulation Momenta

Preliminary X-ray spectrum

• Approximate Kramers formula for thick target was used:

$$\frac{dY}{dk} = \frac{2 \times 5 \times 10^{-4} Z}{511} \left(\frac{E_{\rm max} - k}{k} \right) \ \ \text{(photons per keV)}$$

- •Only interactions with Cu included so far.
- •Work in progress to simulate X-ray spectrum in MARS code.

Future Plans

1. Implementation

- MAUS Monte Carlo Module
- Stand alone Dark Current Simulation

Features

- Solenoidal Field Simulation
- dE/dx Approximations
- Be window simulation
- Improved analysis

3. Uses

- Tracker X-Ray Detectors
- Input to PPE Discussions
- Cavity Monitoring

