Cavity/Muon timing

Need

- 1. Cavity phase and amplitude measurement.
- 2. Cavity phase for each Muon.
 - Unambiguous phase assignment for each particle.
 - Muon phase can be calculated from experiment as long as individual muons can be bundled by RF phase for later analysis.

Cavity phase and amplitude

- Frequency of RF 201.25 MHz
 - 1 Period of RF ~ 5ns
- DAQ: Caen V1724 fADC. 100MS/s, 14 bit. 512kS/ch.
 - One Data Point every 2 Periods, well below the Nyquist limit.
- Can original RF signal be regenerated with acceptable accuracy from undersampled digitised signal?

Undersampled Signal Processing

- 201.25GHz, recorded on oscilloscope at 40GS/s.
- Data thinned to give waveforms sampled at 1GS/s and 100MS/s (same as digitisers used elsewhere in MICE system).
- 100MS/s for 1ms = 100k pts/ pulse.
- Fit to data
 - free parameters
 - phase and amplitude
 - frequency restricted +/- 50kHz (+/-1kHz @ limit)
- Yet to be proven.
- Ultimate accuracy limited by pulse length.
 - 1ms pulse implies 1kHz accuracy on frequency.

Cavity/Muon phase: Digital low level RF Control

- To **control** and regulate cavity amplitude and phase angle during the RF pulse. Based on LBNL LLRF4 board.
- Target 0.5 degree phase, 1% amplitude
- Systems in use already with EPICS control, feedback, feedforward, resonance control etc
- Results obtained (ALICE)
 - 1 Year of operations. 2 failure conditions
 - involving RS232 communications problems.
 - Flat top Phase RMS error 0.04 degree
 - Flat top Amplitude RMS error 0.2%
- Ramped pulse structure to limit reflected power tested on bench with 1.3GHz cavity.

Peter Corlett, RAL

Digital LLRF

- Master oscillator (MO) at 201.25MHz, derived from 10MHz clock.
- MO has fixed phase relationship to 10MHz clock.
- Does not measure phase or amplitude.

Peter Corlett, RAL

Muon/Cavity phase measurement

Digitise both cavity sample signal and LLRF master oscillator.

- Determine cavity phase wrt master oscillator.

- TDCs are time corellated using direct external clocking or PLL locked to either external source or internal @ 40MHz.
- Use TDC timing signal to phase lock digital LLRF master oscillator or vice versa.

TOF Timing Circuit

For the TOF measurements the photomultiplier tube response time and electronics delays are not needed as the calibration is performed relative to a reference 'pixel' in the TOF

- LLRF MO signal into free TOF discriminator channel -> TDC.
- Discriminator max 30MHz repetition rate.
 - Frequency min error 1kHz/200MHz x ~5ns = 0.25ps error per RF period
 - 30MHz acquisition rate max time error = 7 periods x 0.25ps = 1.75ps.
- Continuous measurement of MO phase at 30MHz sample rate.
- Fit sine wave to sample to determine phase of Master Oscillator wrt TDC at any given time.

