Neural Networks, Scaling Laws
and Effective Field Theories

Zhengkang "Kevin" Zhang (University of Utah)

[ZZ,2405.19398] + [Banta, Cai, Craig, ZZ, 2305.02334]

Trillion
1.1 Curve Fitting with at Least a Million Parameters

If at any point Machine Learning seems confusing, complicated, jargon-filled, etc, then just remember...
it’s really just curve fitting, or ‘regression’, with a very, very large number of parameters.

[Kaplan, “Notes on Contemporary Machine Learning for Physicists.”]

Let’s start simple...

Observe data: {x,,y,} (a=1,..,T).

Linear regression:

fioy(x) = 0, + 0, x (2 parameters)

Minimize loss £ = %Z[f{@}(xa) — ya}Q = fit parameters {0}

«

Linear regression:

fioy(x) = 6y + 0, x (2 parameters)

Cubic regression:

fioy(x) =0y + 6, x + 6, x> + 05 x> (4 parameters)

Linear regression:

fioy(x) = 6y + 0, x (2 parameters)

Cubic regression:

fioy(x) = 0o+ 0, x + 6, x* + 05 x> (4 parameters)

10t degree polynomial regression?

fioy(x) =0p + 6, x+ -+ 6,5 x'° (11 parameters)

??

Generalize:

fioy(x) =2 0; ;(x)
This is known as a linear model: linear combination of feature functions.

Adjust coefficients {0} (model parameters) to fit data.

In the examples above, we picked: ¢;(x) = x/ .

Not always the best choice of feature functions.

Alternative: ¢;(x) = sin(jmx) . /\,\/\/\M ©
fioy(x) = 0y + 6, sin(mx) + 0, sin(2mx)

But how do we know which is better to use?

;(x) =x/ or ¢;(x)=sin(jmx) or something else?

Additional complication: “curse of dimensionality.”

X = ((ry, g1, b)), (13, g2, by), ...) € R3L1l2

U

f(x) = “cat”

L, pixels

4 B

[Credit: ChatGPT]

What are the useful features in such high-dimensional input space?

Beyond human’s capability?

Machines can help!

Solution offered by modern Al/ML.:

U Random features (a LOT of them).

U Deep neural networks capable of building useful features according to data
(learning features from data).

Let’s look at the simplest neural network...
fiown @) =X 16, (%)

@;(%) = 0(Tf=1 Wik xx + b;)

X1
L |x f 1
X = :2 [weights biases
4
Xd activation function

input — hidden layer — output

linear transformation — nonlinear activation function — linear transformation

e.g. RelU

.

tanh

.

1

Let’s look at the simplest neural network...

input — hidden layer — output

fiown @) =X 16, (%)

@;(%) = 0(Tf=1 Wik xx + b;)

[weights biases

!

p
activation function

e.g. RelU

{/=

.

tanh

.

1

J

Draw {W};, b;} randomly from Gaussian distributions = random features.

Fit {6, } to data: linear model w/ (a lot of) random features.

v U N) (2
In reality, evolve all of {6, W;;, b; } by gradient descent. flo.w () = 2j=10j 9 (%)

0;(X) = o(T¢_y Wi xp + b;)

: 1 S 2
Loss function: £ = 5 22=1(f{e,w,b}(xa) - Ya)

o 6;(t+1)=6;(t) -7 %(t) =0;(t) =N Xoc1(fFKas) = Vo) @ (Xg; t)
O Wi(t+1) = W (t) - n—(t) Wik () = 1 2o (f Rai t) = yo) 0;() 0] (R £) (K

O bi(t+1)=b(t) - TI (t) = b;(t) — N Xa=1(f Ga; 1) — ¥a) 6;(t) 0] (%5 1)

However, must have 6, ~ O (\/iﬁ) st. f(xX)~0Q).

Large N limit: only {6, } evolve, {W,,, b;} are “frozen.”

10

So indeed:

wide neural network = linear model w/ a LOT of random features.

This is Part 1 of how modern Al/ML works (pproximately).

1

Part 2: stack L layers = deep neural network.

Feature functions ¢; evolve according to data at O (%) :

Emergent scale: depth-to-width ratio. [Roberts, Yaida, Hanin, 2106.10165]

L layers

Note: must stay in L < N regime b/c statistical fluctuations also accumulate as %

12

Reca P: (a physicist’s pisse) understanding of) how Al/ML works

1 Wide neural network = linear model w/ a LOT of random features.

U Deep neural network learns features from data.

13

Reca P: (a physicist’s pisse) understanding of) how Al/ML works

1 Wide neural network = linear model w/ a LOT of random features.

U Deep neural network learns features from data.

Some behaviors of deep neural networks appear (at leading order) not to rely on their
capability to learn features.

They are consequences of the “magic of large numbers” (of random features).
Example: neural scaling laws.

14

Neural scaling laws

Many ML models exhibit power law scaling of performance.

[Kaplan et al, 2001.08361] [Sharma, Kaplan, 2004.10802] [Bahri et al, 2102.06701]

4.2
3.9
94
"g 3.3
= 3

3.0
L = (Cpmin/2.3 - 108)~0:050

2.7

2 r T T T
100 1077 107° 103 107! 10!
Compute

—— L=(D/5.4-1013)70:0%

5.6
4.8

4.0

3.2

2.4

—— L=(N/8.81013)70.076

108 10°
Dataset Size

105 107 109
Parameters

Solvable random feature model to understand the physics?

15

Qutline

@

How Al/ML works.

Wide and deep neural networks, magic of large numbers + feature learning.

Simple model of neural scaling laws.

Teacher-student setup, fit random projections with random features.

Solution.

Effective theory, planar diagrams.

Duality.

Symmetry of scaling laws, neural networks < field theories.

16

Teacher-student setup

input label
Train: X, —| teachermodel |— y,
j|~ compare
I—» student model f;, | — fy(¥,)

T

update parameters # — 6* to minimize £ = % Ya=1(fo(ie) — va)?

compare

|

| f L= 23E %) —95) |
evaluate performance: £ = - ¥ (fo(Xs) —93) (testloss)

Test: Xpg —> teacher model — }7/3 }

|—> student model fy« | — f@*(fﬁ)

17

Input: %,,%; € RM

X11
Training set: x = (X1, ..., Xp) =| i e RMXT
XM1 XMT
R R X11 X17
Testset: %= (%;,..,x7) = i e RMXT
Xm1 Xmt

Drawn from Gaussian distributions with

<xla) = (flﬁ) =0, (x11a1x12052) = A11125041“2 ’ (56\11[3156\1232) = A11126,31.32

18

Input: x,,x; € R
Drawn from Gaussian distributions with
<x10£) = (21,3) =0, (x11a1x12052> = A11125061(%2 ’ (5511[315512,32) = A11126,31,32 .

Eigenvaluesof A: A; = A4 7O+ (@ > 0).

Power law in input data spectrum (observed in natural language and image data sets)

ML models w/ certain properties .
Power law scaling of test loss. [Maloney, Roberts, Sully, 2210.16859]

19

Teacher model: random projection

Training set: Vo = V(X)) = 211wy xpg
Test set: Vg =)7(9?3) =Xitiw, Xip

with w drawn from Gaussian distribution with

2
(wi) =0, {wywy,) = =26, .

x —® | teacher

|—> student

i.e. y

i.e.

<
[l
S

-y
j|’ compare
—> fo(x)

Il
S
=

&

20

Student model: wide neural network

~ linear model with a lot of random features.

x —»

R

teacher

student

-y

—> fo(x)

zZ = Z?Ll 9]- Pi, @j (55) = Z?/Izl uj,J_c’, (omit biases & nonlinear activation function)

le.z=0¢, p=ux.

Draw u from Gaussian. Train 6 .

2
(uf1> =0, (uf1l1uj212) = % 5]1]261112 :

Recall: Training does not change u in N — oo limit.

:|> compare

21

x —»| teacher | y
o e }compare
Training L [Stadent |-+ 2

Loss function: £ = %(”Z —vIZ + v11911%)

! !

mean squared error regulator (penalizes large |6;])

Minimize over training dataset = 0* =yl qg=vy0Q @'

1 NXN 1 TXT
where = € R , = e R
1= VrpeT 1 ¢ y+oTe t
of features # of training data points (samples)

v (“ridge parameter”) ensures invertibility = unique solution.

22

x —»| teacher [37}
compare
Test \—> student |—> 2

Evaluate student’s performance after training by (per-sample) test loss.

A 1 ~ ~ . ~ * A A A~
L) =220 =917 with 200 =0"0NP¢=y9" a1 P=yQ0() ¢ .
Function of ridge parameter y (coefficient of ||8]|? regularization term in training loss).

o Y — 0 (ridgeless limit): solved in [Maloney, Roberts, Sully, 2210.16859] .

o General y : solved in [zz, 240519398] = role of regularization in ML + new scaling laws.

23

Reca P the model [Maloney, Roberts, Sully, 2210.16859]

teacher
X > —> Yy

y=WwXx

]» compare
I—» student — 7

generated from Gaussians

24

Qutline

@

¢

How Al/ML works.

Wide and deep neural networks, magic of large numbers + feature learning.

Simple model of neural scaling laws.

Teacher-student setup, fit random projections with random features.

Solution.

Effective theory, planar diagrams.

Duality.

Symmetry of scaling laws, neural networks < field theories.

25

teacher
y=wXx

|—> student

weights (microscopic) =

>y

]~ compare
— Z

generated from Gaussians

(macroscopic)

Expected test loss: (£) = % [dx dx du £ eSx%ul

o4

where S[x,%,u] = % tr(xTA x + RTA 1R + uZ W) w/ A=A, 2= ~ 1y

Here’s the key: £ dependson u onlyvia o =ux, § =ux.

26

Integrate out weights = effective theory of features

[ZZ, 2405.19398] (inspired by [Roberts, Yaida, Hanin, 2106.10165))

1 PO 1 - N Sl
Z_eff o~ Sest[2,2,0,8] _ 7 /du 5(p — uz) 6(P — ud) e Sz, z,u]

Set|T, T, 0, 0| = %tr(mTA_la:) + %tr(/x\T K_lff) + %tr [(cp ?) K1 (:gi)] + N log det(27K)

/ f

("X 2"EX can be written as ghost action,
C\"Xx 27 but won’t need explicitly

Feynman rules:

z" z z" z
. F e N o ‘e o
A% B . - ~
225 SL # '..‘ ...' < 5 g // A \\ .“ N ..‘
Vi \ / ., K \ . . B %
/ \ / % . \ 3 % ! \ ; A -
I | | : : \ H : [! : E
i T ~
p 12 4 9

A
A
A
)
8
8
8
8)

27

Highlights of the calculation [2Z, 2405.19398]

Matrix variables = double line notation.

Large N,T,M limit = planar diagrams only (as in large-N field theory).
T

of features, # of training samples, input dimension

Factorized structure:

Each blob = geometric series. All-order resummation possible!

28

Here’s what it looks like...

// \\

, \

+(1)3 /\; _’:/ \:x _’: \:> L’\
WONWV NN

= — 17 N{(g) Y _(—YNT(a)(@))" tr[(AZ)"*']
n=0
AT]

— ~17N{g) tr[w '

= T2(Q)2tr{(1\2)2

Z (_7_1)2+n1+n2 (7N<q>)n1+n2 (7T<Q>)2+nl+n2 tr [(AE)2+n1+n2:|

Q) tr

(L +7EAD) |

0 2
Z(%AE)"] }
n=0

(A%)®

29

A
Result e (1+7€A2)2] [ZZ, 2405.19398]
: -
R l
L)=2w
[TR AN) (AT - R
o] (A e | (A L[s
re=T <Q> tr (1 ¥ ’yfAE)Z] =N <q> ¢ (1 + ’YfAZ)Z a=t (1 + 7§A2)2]
£,(q),{(Q) are defined by: £ = NT(g)(Q) vE tr(1 n ,@2) =N(1-7(g) =T(1-%Q))

Result [2Z, 2405.19398]

(L) = Zo l

2M (1 — 42N {g)2r.) (1 — v2T(Q)%v) — L7 172

Function of ridge parameter y (coefficient of ||8]|? regularization term in training loss).

In practice, wish to set y = y*, optimal value at which (£) is minimized.

Scaling law of the optimal test loss: power-law exponent of data spectrum

}
)y = Cg}ZU\J)\+ Linl(‘tai)] l+a (1 —|2— y)1+a ll +2(1_‘_—|-aa)u] -1 (% N %)a

1+a J N\ J
correction factors -~

Y Y
overall scaling
(involves a and a function v(N,T)) (conjectured in [Maloney, Roberts, Sully, 2210.16859))
31

Role of regularization

Fix T (training dataset size), look at scaling with N (model size). Same with N & T.

1. Unregularized (singularat N = T).

2. Under-regularized.

3. Optimally regularized.

4. Over-regularized.

Power-law (N < T) followed by
plateau (N > T), as observed in
practical ML settings.

0 10

More scaling laws

Optimal ridge parameter also exhibits scaling laws (w/ different exponent).

1+
N~ ¥ B -2 N T £ R 2 Gy 6 WS A
TETM |sin(E) | ala+n \ 2 NTT

1+
1071g —— T ——3
g a=05 7 1075k
1072] E
10_3? a=1 r
: 1070
e 10_4§ e i

1077%

E M = 6000

_7 L N L N ...- L n PR S S SR | n I S S S S R |
10775 0 10° 10 102 10°

Outline

& How Al/ML works.

Wide and deep neural networks, magic of large numbers + feature learning.

& Simple model of neural scaling laws.

Teacher-student setup, fit random projections with random features.

& Solution.

Effective theory, planar diagrams.

o Duality.

Symmetry of scaling laws, neural networks < field theories.

34

Neural scaling laws appear to be (approximately) symmetric between N and T.

of features # of training samples

Our simple model indeed predicts (£)(N,T) = (L)(T,N) .
(E) = 2 &
- 2M (1= 2N) (1= 2T (Q)%) — 3 7
~_ O

There is actually a duality transformation that exchanges N < T and maps various
quantities onto each other.

35

And it goes like this...

O -, oo\ - N N -e
N P <
—1\2 : T dual . 3
___@__ zjual} @ (_fy 1)]%’E (ﬂ) :| M /|:
7 Lo VL)l

L1+ 2Ls + E’
£1 +2L9 + [,’

AT
AT

Upshot: diagrams-level duality = sum of all diagrams is self-dual.

36

Take this notion of duality further?

Let’s initialize a 1 hidden layer neural network.

fo(x) =X, 06 <,?j (x) with 6, ~ P(6)

(random) feature functions

Correlation functions (ignoring randomness in ¢; for now):

(fCer) - f i) = | dO P() fo(xy) ... fo(xi)

- s

J dé P(8) §(f — fo)

fQeq) . fOag) = | Df

_/

fQeq) o f ()

37

(f Ce1) o f ()} = [dO P(0) fo(x1) o fo (i) = | Df PIf] f(x1) oo f (i)

Probability distribution in

parameter space: P(6) w/ 6; carrying feature index j ;

functional space: P[f] w/ f, = f(x,) carrying sample index « .

e SI7]

neural networks < field theories ?

[Halverson, Maiti, Stoner, 2008.08601 + 2106.00694] [Halverson, 2112.04527]
[Demirtas, Halverson, Maiti, Schwartz, Stoner, 2307.03223] [Howard, Klinger, Maiti, Stapleton, 2405.17538]

38

There’s a notion of RG flow... and it has structures!

[Roberts, Yaida, Hanin, 2106.10165] [Banta, Cai, Craig, ZZ, 2305.02334]

uv -> IR
L
o
&
Q
B f
~J
L
o

lan Banta Tianji Cai
(UCSB Physics —» CCS) (UCSB — SLAC)

Nathaniel Craig
(UCSB & KITP)

39

Outline

@

¢

How Al/ML works.

Wide and deep neural networks, magic of large numbers + feature learning.

Simple model of neural scaling laws.

Teacher-student setup, fit random projections with random features.

Solution.

Effective theory, planar diagrams.

Duality.

Symmetry of scaling laws, neural networks < field theories.

40

Closing thoughts: navigating the age of Al as a theoretical physicist

Al/ML as a tool = amazing science.

13

cat”

A Living Review of Machine Learning for Particle Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy physics.
The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these approaches to
experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible to incorporate
the latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set of topics to be
as useful as possible. Suggestions are most welcome.

download w [© GitHub

Number of HEP-ML Papers by Year

As of 31.10.2024
400
o
[}
& 300
a.
N
o
@
g200-
>
2
100 A
o+——""T""T"—"——T=
O AN MT NOMNODODO-ANMT INOMNWOWNDO - NM
OO0 0000000 ™ A AN NN N
OO0 0000000000000 O00O0O0 000 OO0 o
N AN AN NN NN NN NN NN NN NN NNN NN N
Year

Table of contents
Reviews
Modern reviews
Specialized reviews
Classical papers
Datasets
Classification
Parameterized classifiers
Representations
Targets
Learning strategies
Fast inference / deployment
Regression
Pileup
Calibration
Recasting
Matrix elements
Parameter estimation

Parton Distribution Functions
(and related)

Lattice Gauge Theory
Function Approximation
Symbolic Regression
Monitoring
Equivariant networks.
Decorrelation methods.

Generative models / density
estimation

M

Closing thoughts: navigating the age of Al as a theoretical physicist

Better understanding of how the tool works = more amazing science.

Industrial Revolution I:> thermodynamics I:> modern physics
(steam engine)

& statistical physics + countless new technologies

Al Revolution I:>

? 277
(deep neural networks) theory of ML* = 2?7

Many intersections with ideas and tools in theoretical physics.

Effective theories, RG, criticality, large-N field theory, Feynman diagrams, ...

42

Backup slides

Linear model = kernel method

Kernel: measure of similarity between data points.

((PT(P)alaz = Z?:l on(fa’l) 90]'(55“2)

@TPa,p, = 2h=1 0 (%) 901’(’%32)

Trained model prediction: Zg = ¥4, 0, Vo, ¥ + gngo)&llaZ (§0T§5)a23

T compare unseen test data with seen training data

Then form linear combination of seen labels according to similarity

44

