

Modelling detector-specific reconstruction uncertainties in LAr-TPC

Student: Lorenzo Vincenzo D'Auria **Supervisors:** Harry Hausner, Angela Fava <u>End-Term Presentation</u>, *Sept-26-2024*

The SBN Program

2

- Experimental observation of neutrino oscillations have established a picture consistent with the mixing of three neutrino flavors (ν_e, ν_µ, ν_τ) with three mass eigenstates (ν₁, ν₂, ν₃): however, in recent years, several experimental «anomalies» (Reactor/Gallium and LSND/MiniBooNE anomalies) have been reported which could be hinting at the presence of additional neutrino states with larger mass-squared differences participating in the mixing;
- The most common interpretation of this collection of data is evidence for the existence of one or more additional, mostly «sterile» neutrino states with masses at or belowe the few eV range: the SBN physics program fits in this framework, testing the sterile neutrino hypothesis with the peculiarity of seeing the neutrino oscillation as the disappearance of v_u (SBND) and the appearance of v_e (ICARUS).

09-26-24 Lorenzo Vincenzo D'Auria I Modelling detector-specific reconstruction uncertainties in LAr-TPC

LArTPC Working Principle in ICARUS

- Reconstruct tracks and showers with high level of detail and efficiency, as well as to provide a precise measurement of ionization charge necessary for good particle identification based on ionization energy loss;
- Operation based on subsequent steps:
 - Ionization electrons production;
 - Drifting to the wires;
 - Creation of signals.

- ICARUS consists of two identical adjacent modules (cryostats); in each there are two TPCs separated by a central, vertical, common cathode;
- Each TPC has three parallel read-out planes: induction-1 has horizontal parallel wires, while induction-2 and collection are oriented ±60° with respect to it;
- ICARUS consists of a total of **55,295 readout** channels.

Event Reconstruction in ICARUS

Split Tracks

The purpose of this work is to analyze and model detector-specific reconstruction uncertainties in Lar-TPC. Such
reconstruction inefficiencies are identified during the «Patter Recognition» phase and significantily affect the subsequent steps
of Particle Fits and High Level Analysis.

- An important class of detector-specific reconstruction uncertainties is represented by «Splittig Tracks»: these are caused by missing hits that were not accounted for at the reconstruction level or that PANDORA was not able to account for when stiching the divided tracks segments. At the detector level, the most common known reason for track splitting are:
 - ✓ Malfuctioning channels;
 - ✓ Presence of the cathode Plane;
 - ✓ Electric field distortions.

Goal of the internship

- The goal of my internship is moving on sequential steps:
 - 1. The first step consists in writing a plug-in, based on LArSoft's ART framework, whose purpose is to **identify the presence of split tracks** based on their geometric characteristics (length, gap and angle between them);
 - 2. Use the plug-in on various runs in order to validate its selection performance, reconstruction of the quantities of interest and study the distribution of the observables in order to select the most favorable cuts;
 - 3. Study the **distribution of lost channels** due to split track phenomena on different wire planes, understand their behavior and **quantify the coherent noise component** to which the different planes are subject. Implement the distribution of lost channels to the **HARPS tool** in order to generate a data sample enriched by the presence of multiple split tracks.

In particular, this discussion will be divided into four parts

- 1. Presentation of the Plug-in form and focus on the calculation of the observables of interest;
- 2. Determining the cuts by applying the plug-in to run 9435 and validating the plug-in capabilities by applying it to runs 7xxx;
- 3. Study of the distribution of lost channels and HARPS tool;
- 4. Conclusion.

1. Plug-in logic and calculation of variables of interest

1. Logical structure of the Plug-in used – general scheme

1. Logical structure of the Plug-in used – Angle between tracks (1)

For the angle, two cases are possible:

9

- **Parallel Case:** Take the angle between the common direction and the line connecting the start and end subtracks this from π to approximate a difflection angle.
- Not parallel case: In this case we proceed in steps
 - 1. Based on the last_1 and first_2 points -> Project towards track 1 and forwards track 2;
 - 2. Search midpoint M of perpendicular line that minimize distance between them;
 - 3. Store the angle formed by the end of Track 1, M and the start of Track 2.

1. Logical structure of the Plug-in used – Angle between tracks (2)

• The situation is never that easy...

Determining the cuts by applying the plug-in to run 9435 and validating the plug-in capabilities by applying it to runs 7xxx
 (7152, 7190, 7230, 7244, 7262, 7334, 7339, 7418, 7428, 7471, 7504)

2.1 Run9435: Comparison between selected and true variables

- To validate the plug-in's ability to reconstruct the variables of interest run 9435 was used, of which the presence of 26 pairs of split tracks is known.
- The search was limited exclusively to anomalous events and a selection was made in the search for pairs of tracks with a **length greater than 5cm** and with a **gap less than 25cm**.
- The table shows a quantitative comparison to confirm the **accuracy** of the reconstruction of the variables of interest.

Variable	True- Positive	False- Positive	False- Negative
Angles	14	8	12
Gap	18	4	8
Length1	21	1	5
Length2	21	1	5

2.1 Run9435: Distribution of variables of all tracks and cuts selection

- By comparing the trends of the observables for split track phenomena with the totality of the pairs (see right), **three simultaneous cuts** were obtained to be performed to identify split track events on a generic sample:
 - Length of the tracks

L1, L2 > 40 cm

Gap between the tracks

Gap < 25cm

Angle between tracks

 $\theta \in \{ [0, 25]^o \cup [155, 180]^o \}$

• The number of tracks that pass the three simultaneous selections is approximately **0.007%**.

2.2 Run7xxx: All tracks

• In runs 7xxx a trend **similar to that of run 9435** is observed (although with greater statistics), except for the length of the tracks which has a **peak around L=320cm** (probably referred to tracks associated with muons);

- The total number of track pairs found before selections is N=4,362,526.
- The next slides will show the cuts performed sequentially in order to highlight the need for increasingly precise selections for the identification of split track events.

2.2 Run7xxx: Selection on Gap

2.2 Run7xxx: Selection on Gap and Angle

2.2 Run7xxx: Selection on Gap, Angle and Length

‡Fermilab

3. Study of the distribution of lost channels

3. Lost Channel Storage Logic

- Once the reconstruction and selection capabilities of the plug-in have been confirmed, the last study performed is associated with the **distribution of lost channels**: this study is useful to understand the portions of the detector most subject to split track phenomena and quantify their impact on the reconstruction of events;
- The study of lost channels will also be implemented in the HARPS (Hit Activity Removal from Particles for Systematics) tool: the goal of HARPS is to modify the events to remove certain hits (according to channel lost distribution) and thus generate modified samples and study how reconstruction changes depending on the applied change.

Fermilab

3. Missed Channel vs Gap Lenght distribution

20 09-26-24 Lorenzo Vincenzo D'Auria I Modelling detector-specific reconstruction uncertainties in LAr-TPC

3. Channel lost - fit

‡Fermilab

09-26-24

4. Conclusion

4. Conclusion

THANKS FOR YOUR ATTENTION!

BACKUP SLIDES

Physics Program

- Experimental observation of neutrino oscillations have established a picture consistent with the mixing of three neutrino flavors (ν_e, ν_µ, ν_τ) with three mass eigenstates (ν₁, ν₂, ν₃): however, in recent years, several experimental «anomalies» have been reported which could be hinting at the presence of additional neutrino states with larger mass-squared differences participating in the mixing;
- Mainly two distinct classes of anomalies pointing at additional physics beyond the SM, namely:
 - Reactor and Gallium Anomaly
 - LSND/MiniBooNE anomaly
- The most common interpretation of this collection of data is evidence for the existence of one or more additional, mostly **«sterile» neutrino states** with masses at or belowe the few eV range;
- The SBN physics program fits in this framework, testing the sterile neutrino hypotesis with SBND and **ICARUS**.

2.1 Run9435: Comparison between selected and true variables

- In this preliminary phase the main objective was to validate the plug-in's ability to reconstruct the variables of interest and to search for the optimal cuts to be performed to select split track events. For this purpose, run 9435 was used, of which the presence of 26 pairs of split tracks is known (whose characteristics are known and collected in <u>drive</u>).
- Therefore, knowing the anomalous events, the search was limited exclusively to these and a selection was made in the search for pairs of tracks with a **length** greater than 5cm and with a gap less than 25cm. The results obtained are presented in the figure, the quality of the selection is summarized in the table:

Variable	True- Positive	False- Positive	False- Negative
Angles	14	8	12
Gap	18	4	8
Length1	21	1	5
Length2	21	1	5

🚰 Fermilab

3. RUN7xxx: Comparison between different selection steps

3. RUN7xxx: Abnormal Examples

