

ArCS LArTPC: Assembly, Preparation, and Beam Test Study

Giulia Cicogna Final Presentation for the Italian Summer Program at Fermilab 2024 26th September 2024

R&D Project

A Liquid Argon Time Projection Chamber in a Magnetic Field [LDRD]

Reusing the LARIAT TPC and placing it inside the Jolly Green Giant magnet at the Fermilab's Test Beam Facility.

A Liquid Argon Time Projection Chamber in a Magnetic Field [LDRD]

1 2 3

Demonstrate charge sign discrimination for e⁻ and e⁺

Particle momentum reconstruction via its curvature

Determine **minimum magnetic field** for such measurements

Internship Activities Overview

EXPERIMENTAL SETUP

10 WRD Warm Receiver and Driver

FT

8 D2S Differential To Single-ended Warm Electronics

There are different beam **operating modes**. The nominal one considered has a pion spill of 2.5×10^5 .

- Each event simulates a π⁺ from the secondary beam of the FTBF impinging on a Cu target, thus generating the tertiary beam (as in LArIAT configuration).
- The beam is defined as a Gaussian-distributed one with an energy of **64 GeV**.

The previous LArIAT configuration was *different*

9 9/26/2024 Giulia Cicogna | Final Term for the Italian Summer Program at Fermilab 2024

PROBLEM from previous LArIAT configuration

10 9/26/2024 Giulia Cicogna | Final Term for the Italian Summer Program at Fermilab 2024

My contribution...

- I updated the existing geometry with **2 US detectors** (virtual WCs) to trigger on;
- I added the **concrete blocks** and the **muon range stack** from the FTBF;
- This detector geometry was used to study 3 main configurations.

Concrete Blocks

.

JGG Magnet

16 9/26/2024 Giulia Cicogna | Final Term for the Italian Summer Program at Fermilab 2024

18 9/26/2024 Giulia Cicogna | Final Term for the Italian Summer Program at Fermilab 2024

3 Main Configurations

For each configuration...

- I triggered on DetT1, DetT2 (US), and Det7;
- I studied the spectra of all particles across such detectors (momentum, polar and azimuthal angles), focussing on electrons and positrons;
- I studied the **flux characteristics** with respect to the detectors' surface;
- I counted the occurrences for each particle type.

‡ Fermilab

DetT2

Example Plot: Momentum Spectra of Positrons

‡ Fermilab

DetT2 Example Plot: Momentum Spectra of Electrons and of Positrons

JGG Magnet OFF

LArIAT Magnets (B1 and B2) OFF

Electrons

Example Plot: Particle ID

🛟 Fermilab

Example Plot: Particle ID

🛟 Fermilab

25 9/26/2024 Giulia Cicogna | Final Term for the Italian Summer Program at Fermilab 2024

JGG Magnet OFF

Example Plot: Particle ID

LArIAT Magnets (B1 and B2) OFF

😤 Fermilab

Triggering with detectors more US, considering the direction on-axis with the secondary beam led to...

Rate of detection

≈ 27 electrons/min≈ 26 positrons/min

≈ 19 400 electrons≈ 18 900 positrons

- Removed the WLS foils from the cathode;
- Replaced a faulty resistor in the divider chain;
- Cleaned the chamber;
- Installed wire planes;
- Placed the external frame to tension the wires;
- Soldered different connectors for various purposes (FT, HV, level probes, bias filter boards);
- Completed wiring for FT and HV.

The first days...

The last days...

- Cold and Warm Boards were tested. CMBs are now properly connected to the LArTPC.
- The detector was cleaned and restored. All the needed cabling and wiring were completed, although some cables still need to be connected (shortly!).
- Beam studies proved that a high statistic for electrons and positrons can be achieved when considering the secondary beam.

Backup Slides

Giulia Cicogna Final Presentation for the Italian Summer Program at Fermilab 2024 26th September 2024

DetT2 Example Plot: Momentum Spectra of All Particles

‡ Fermilab

DetT2 Example Plot: Angular (polar) Spectra of All Particles

DetT2 Example Plot: Angular (azimuthal) Spectra of All Particles

Example Plot: Angular Spectra of **Electrons**

JGG ON LARIAT OFF

Det7

Example Plot: Angular Spectra of **Positrons**

JGG ON LARIAT OFF

Det7

DetT2 Flux Characteristics

