Nuclear Effects in Neutrino-Nucleus Cross Sections

Raúl González Jiménez

University of Seville, Spain

Grants PID2021-127098NA-I00 and RYC2022-035203-I funded by MCIN/AEI/10.13039/501100011033, "ERDF a way of making Europe" and FSE+.

Seminar@Fermilab, September 12, 2024

Overview

- 1. Introduction and motivation
- 2. Quasielastic and Single-Pion Production: the impulse approximation
- 3. Nuclear effects
- 4. Beyond Impulse Approximation: two-body currents
- 5. Final remarks

Goals of the Neutrino Oscillation Program

NuSTEC^a White Paper: Status and Challenges of Neutrino-Nucleus Scattering

L. Alvarez-Ruso,¹ M. Sajjad Athar,² M. B. Barbaro,³ D. Cherdack,⁴ M. E. Christy,⁵ P. Coloma,⁶ T. W. Donnelly,⁷ S. Dytman,⁸ A. de Gouvêa,⁹ R. J. Hill,^{10,6} P. Huber,¹¹ N. Jachowicz,¹² T. Katori,¹³ A. S. Kronfeld,⁶ K. Mahn,¹⁴ M. Martini,¹⁵ J. G. Morfín,⁶ J. Nieves,¹ G. Perdue,⁶ R. Petti,¹⁶ D. G. Richards,¹⁷ F. Sánchez,¹⁸ T. Sato,^{19,20} J. T. Sobczyk,²¹ and G. P. Zeller⁶

- 1. establish whether nature violates CP in the lepton sector and, if so, measure δ_{CP} ;
- 2. improve the accuracy on θ_{23} and, if not maximal, a determination of the octant it belongs to: $\theta_{23} < \pi/4$ vs. $\theta_{23} > \pi/4$;
- 3. determine the neutrino mass ordering at high confidence level: $m_1 < m_2 < m_3$ vs. $m_3 < m_1 < m_2$.

	θ_{12}	θ_{13}	θ_{23}	$\Delta m^2_{21}/10^{-5}$	$\Delta m_{3j}^2 / 10^{-3}$	δ_{CP}
Normal Ordering	$33.56\substack{+0.77\\-0.75}$	$8.46_{-0.15}^{+0.15}$	$41.6^{+1.5}_{-1.2}$	$7.50\substack{+0.19 \\ -0.17}$	$2.524^{+0.039}_{-0.040}$	261^{+51}_{-59}
Inverted Ordering	$33.56\substack{+0.77\\-0.75}$	$8.49_{-0.15}^{+0.15}$	$50.0^{+1.1}_{-1.4}$	$7.50^{+0.19}_{-0.17}$	$-2.514^{+0.038}_{-0.041}$	277^{+40}_{-46}

ľ

DUNE: Deep Underground Neutrino Experiment

$$P_{a \to b} = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 (\text{eV}^2) L(\text{km})}{E_{\nu} (\text{GeV})} \right),$$

$$P_{a \to b} = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 (\text{eV}^2) L(\text{km})}{E_{\nu} (\text{GeV})} \right),$$

$$P_{a\to b} = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 (\text{eV}^2) L(\text{km})}{E_{\nu} (\text{GeV})} \right),$$

v-oscillations experiment 101

STEP 1: Making a beam
STEP 2: Checking twice
STEP 3: Gonna find out
if you've more of one type

 $N^{\mu}_{ND}(Er) = \int \phi^{\mu}_{ND} (Et) \sigma^{\mu}(Et) \epsilon^{\mu}(Et) U_{ND}(Et, t)$

Letector Response

🛟 Fermilab

Your detectors (near and far) count number of neutrino interactions of as a function of reconstructed energy... but your oscillation probability is a function of the true neutrino energy & it is convoluted with quantities depending on your model: flux, cross section and detector response.

slide from Elena Gramellini's talk in NuFact 2023

Er)dE

Summarizing,

cross section models are needed, for two reasons:

1) To get $\mathbf{P}_{\alpha \rightarrow \beta}$ from the measured \mathbf{N}_{β} .

2) To reconstruct the neutrino energy (keep watching).

What do we know about neutrino-nucleus cross sections

The nuclear response

For a fixed incoming energy and scattering angle,

depending on the energy transferred,

the lepton interacts differently with the nucleus (different reaction channels)

Superscaling approach Phys. Rev. D 91, 073004 (2015)

Different reaction channels but same event topology

How does this affect the reconstruction of the neutrino energy?

Example:

1) **QE-like event** in MiniBooNE: muon and no pions are detected. Scattering angle and energy of the muon.

2) Reconstructed energy estimator:

$$E_{\nu}^{QE} = \frac{m_p^2 - {m'}_n^2 - m_{\mu}^2 + 2m'_n E_{\mu}}{2(m'_n - E_{\mu} + p_{\mu} \cos \theta_{\mu})}$$

This formula gives us an estimate of the energy of the neutrino.

3) One can compute the **probability of the reconstructed energy E**^{QE} **matching the true energy E: P(E**^{QE}|E)

Probability density of the reconstructed energy \overline{E} matching the true energy E

https://doi.org/10.1103/PhysRevC.98.054603

Probability density of the reconstructed energy \overline{E} matching the true energy E

https://doi.org/10.1103/PhysRevC.98.054603

+ The distributions are **model dependent**

Probability density of the reconstructed energy \overline{E} matching the true energy E

https://doi.org/10.1103/PhysRevC.98.054603

- + The distributions are model dependent
- + Different reaction channels produce VERY different distributions

Summarizing,

GOOD cross section models are needed, for two reasons:

1) To get $\mathbf{P}_{\alpha \rightarrow \beta}$ from the measured \mathbf{N}_{β} .

2) To reconstruct the neutrino energy.

How does this feeds back into neutrino "new" physics? CP Violation @ long baseline

Type of Uncertainty	$ u_e/ar{ u}_e$ Candidate Relative Uncertainty (%		
Super-K Detector Model	1.5		
Pion Final State Interaction and Rescattering Model	1.6		
Neutrino Production and Interaction Model Constrained by ND280 Data	2.7		
Electron Neutrino and Antineutrino Interaction Model	3.0		
Nucleon Removal Energy in Interaction Model	3.7		
Modeling of Neutral Current Interactions with Single γ Production	1.5		
Modeling of Other Neutral Current Interactions	0.2		
Total Systematic Uncertainty	6.0		

T2K, Nature 2020

"uncertainty on the ν_e and $\overline{\nu}_e$ cross-sections... [is] the 2nd largest single source of systematic uncertainty in the CP asymmetry measurement."

Quasielastic scattering and Single-Pion production

How do we model

Quasielastic scattering and Single-Pion production?

How do we model

Quasielastic scattering and Single-Pion production?

. . .

The IMPULSE APPROXIMATION (IA)

$$J_{\text{had}}^{\mu} = \int d\mathbf{p} \int d\mathbf{p}_{N}^{\prime} \overline{\Psi}_{F}(\mathbf{p}_{N}^{\prime}, \mathbf{p}_{N}) \phi_{\pi}^{*}(\mathbf{p} + \mathbf{q} - \mathbf{p}_{N}^{\prime}, \mathbf{k}_{\pi}) \mathcal{O}_{1\pi}(Q, P_{N}^{\prime}, P) \Psi_{B}(\mathbf{p})$$

raugj@us.es

Sep 12, 2024

$$J_{\text{had}}^{\mu} = \int d\mathbf{p} \int d\mathbf{p}_{N}^{\prime} \overline{\Psi}_{F}(\mathbf{p}_{N}^{\prime}, \mathbf{p}_{N}) \phi_{\pi}^{*}(\mathbf{p} + \mathbf{q} - \mathbf{p}_{N}^{\prime}, \mathbf{k}_{\pi}) \mathcal{O}_{1\pi}(Q, P_{N}^{\prime}, P) \Psi_{B}(\mathbf{p})$$

raugj@us.es

Sep 12, 2024

$$J_{\text{had}}^{\mu} = \int d\mathbf{p} \int d\mathbf{p}_{N}^{\prime} \overline{\Psi}_{F}(\mathbf{p}_{N}^{\prime}, \mathbf{p}_{N}) \phi_{\pi}^{*}(\mathbf{p} + \mathbf{q} - \mathbf{p}_{N}^{\prime}, \mathbf{k}_{\pi}) \mathcal{O}_{1\pi}(Q, P_{N}^{\prime}, P) \Psi_{B}(\mathbf{p})$$

$$J_{\text{had}}^{\mu} = \int d\mathbf{p} \int d\mathbf{p}_{N}^{\prime} \overline{\Psi}_{F}(\mathbf{p}_{N}^{\prime}, \mathbf{p}_{N}) \phi_{\pi}^{*}(\mathbf{p} + \mathbf{q} - \mathbf{p}_{N}^{\prime}, \mathbf{k}_{\pi}) \mathcal{O}_{1\pi}(Q, P_{N}^{\prime}, P) \Psi_{B}(\mathbf{p})$$

$$J_{\text{had}}^{\mu} = \int d\mathbf{p} \int d\mathbf{p}_{N}' \overline{\Psi}_{F}(\mathbf{p}_{N}', \mathbf{p}_{N}) \phi_{\pi}^{*}(\mathbf{p} + \mathbf{q} - \mathbf{p}_{N}', \mathbf{k}_{\pi}) \mathcal{O}_{1\pi}(Q, P_{N}', P) \Psi_{B}(\mathbf{p})$$

Nuclear effects in the cross sections

Small list of **nuclear and nucleonic effects** in the cross sections:

+ **Initial state**: binding energy, Fermi motion (or momentum distributions), short- and long-range correlations

+ Interaction: nucleon form factors, Pauli blocking, beyond one-body currents

+ Final state interactions:

++ Distortion effects or elastic FSI ++ Inelastic FSI (modeled with intranuclear cascade)

$$J_{\text{had}}^{\mu} = \int d\mathbf{p} \int d\mathbf{p}_{N}' \overline{\Psi}_{F}(\mathbf{p}_{N}', \mathbf{p}_{N}) \phi_{\pi}^{*}(\mathbf{p} + \mathbf{q} - \mathbf{p}_{N}', \mathbf{k}_{\pi}) \mathcal{O}_{1\pi}(Q, P_{N}', P) \Psi_{B}(\mathbf{p})$$

Praet et al. (2009), https://doi.org/10.1103/physrevc.79.044603

Figure: CC neutrino-¹²C induced SPP.

Single-Pion Production (in the Impulse Approximation)

$$J_{\text{had}}^{\mu} = \int d\mathbf{p} \int d\mathbf{p}_{N}^{\prime} \overline{\Psi}_{F}(\mathbf{p}_{N}^{\prime}, \mathbf{p}_{N}) \phi_{\pi}^{*}(\mathbf{p} + \mathbf{q} - \mathbf{p}_{N}^{\prime}, \mathbf{k}_{\pi}) \mathcal{O}_{1\pi}(Q, P_{N}^{\prime}, P) \Psi_{B}(\mathbf{p})$$

Inclusive electron scattering **at intermediate q**:

Distortion of the outgoing nucleon (elastic FSI in a Quantum Mechanical way) is important at intermediate energies too !!!

MicroBooNE data, neutrino-nucleus CCQE-like scattering:

Sep 12, 2024

MicroBooNE data, neutrino-nucleus CCQE-like scattering:

https://doi.org/10.1103/PhysRevC.100.045501

Single-Pion Production (in the Impulse Approximation)

$$J_{\text{had}}^{\mu} = \int d\mathbf{p} \int d\mathbf{p}_{N}^{\prime} \overline{\Psi}_{F}(\mathbf{p}_{N}^{\prime}, \mathbf{p}_{N}) \phi_{\pi}^{*}(\mathbf{p} + \mathbf{q} - \mathbf{p}_{N}^{\prime}, \mathbf{k}_{\pi}) \mathcal{O}_{1\pi}(Q, P_{N}^{\prime}, P) \Psi_{B}(\mathbf{p})$$

Sep 12, 2024

Sep 12, 2024

Sep 12, 2024

Single-Pion Production (in the Impulse Approximation)

$$J_{\text{had}}^{\mu} = \int d\mathbf{p} \int d\mathbf{p}_{N}' \overline{\Psi}_{F}(\mathbf{p}_{N}', \mathbf{p}_{N}) \phi_{\pi}^{*}(\mathbf{p} + \mathbf{q} - \mathbf{p}_{N}', \mathbf{k}_{\pi}) \mathcal{O}_{1\pi}(Q, P_{N}', P) \Psi_{B}(\mathbf{p})$$

In-medium modification of the resonance properties

Sep 12, 2024

MINERvA no-pion v_{μ} -¹²C cross section

Franco-Patino et al. (2022), https://doi.org/10.1103/PhysRevD.106.113005

MINERvA no-pion v_{u} -¹²C cross section

Franco-Patino et al. (2022), https://doi.org/10.1103/PhysRevD.106.113005 5×10-39 do/d9 (cm² degree⁻¹nucleon⁻¹) do/d9 (cm² degree⁻¹ do/d9 (cm² degree⁻¹ do/d6 do/d 2×10-4 da/dk' (cm²GeV⁻¹nucleon⁻¹) ROP - ED-RMF rROP - rROP 1×10⁻³⁹ - ROP – RPWIA - RPWIA ED-RMF -------- GENIE-SuSAv2 GENIE-SuSAv2 5×10-4 - 2p2h ---- Other 2p2h Other_(GENIE) ----6 q 10 10 15 5 20 k' (GeV) θ_{l} (degree) do/d θ_{N}^{L} (cm² degree ⁻¹nucleon⁻¹) 9×10^{-41} 9×10^{-41} 9×10^{-41} 9×10^{-41} 0×10^{-41} 6×10-39 da/dp_N (cm²GeV⁻¹nucleon⁻¹) What is this 4×10⁻³⁹ (quite large) "Other" 2×10⁻³⁹ contribution??? 0.5 0.7 0.9 1.1 10 20 30 50 60 70 p_N (GeV) $\theta_{\rm N}^{\rm L}$ (degree) raugj@us.es Sep 12, 2024

MINERvA no-pion v_{u} -¹²C cross section

Franco-Patino et al. (2022), https://doi.org/10.1103/PhysRevD.106.113005 5×10-39 2×10-4 $d\sigma/d\theta_1 (cm^2 degree^{-1} nucleon^{-1})$ da/dk' (cm²GeV⁻¹nucleon⁻¹) ROP ---- ED-RMF rROP - rROP 1×10⁻³⁹ - ROP — RPWIA - RPWIA ED-RMF -------- GENIE-SuSAv2 5×10-4 GENIE-SuSAv2 - 2p2h ---- Other 2p2h Other_(GENIE) ----6 8 9 10 10 15 5 20 k' (GeV) θ_{l} (degree) 6×10-39 da/dp_N (cm²GeV⁻¹nucleon⁻¹) "Other": 4×10⁻³⁹ pion absorption contribution evaluated using GENIE 2×10⁻³⁹ 0.5 0.7 0.9 1.1 10 20 30 50 70 60 p_N (GeV) $\theta_{\rm N}^{\rm L}$ (degree) raugj@us.es Sep 12, 2024

J. García-Marcos et al., Towards a more complete description of nucleon distortion in lepton-induced single-pion production at low-Q2 https://doi.org/10.48550/arXiv.2310.18056

and

Asymptotic approximation for the SPP operator (or local versus non-local operator)

Beyond Impulse Approximation: two-body currents in the 1p-1h sector

Beyond Impulse Approximation: two-body currents in the 1p-1h sector

$$J_{had}^{\mu} = \int d\mathbf{p} \,\overline{\Psi}_F(\mathbf{p} + \mathbf{q}, \mathbf{p}_N) \, \left(\mathcal{O}_{\text{one body}}^{\mu} + \mathcal{O}_{\text{two body}}^{\mu} \right) \, \Psi_B(\mathbf{p})$$

FIG. 1. Delta contributions.

FIG. 2. Background contributions: seagull or contact [CT, (a) and (b)] and pion-in-flight [PF, (c)].

Carbon 12 responses

green lines from Lovato et al. PRL 117, 082501 (2016)

+ The primary nucleon knocks out other nucleon(s).

- + The primary nucleon knocks out other nucleon(s).
- + The primary nucleon creates a pion.

- + The primary nucleon knocks out other nucleon(s).
- + The primary nucleon creates a pion.
- + The primary pion knocks out other nucleon(s).

- + The primary nucleon knocks out other nucleon(s).
- + The primary nucleon creates a pion.
- + The primary pion knocks out other nucleon(s).
- + The primary pion charge exchanges, e.g.: π^+ + n $\rightarrow \pi^0$ + p

- + The primary nucleon knocks out other nucleon(s).
- + The primary nucleon creates a pion.
- + The primary pion knocks out other nucleon(s).
- + The primary pion charge exchanges, e.g.: π^+ + n $\rightarrow \pi^0$ + p
- + The secondary hadrons also suffer FSI

- + The primary nucleon knocks out other nucleon(s).
- + The primary nucleon creates a pion.
- + The primary pion knocks out other nucleon(s).
- + The primary pion charge exchanges, e.g.: $\pi^+ + n \rightarrow \pi^0 + p$
- + The secondary hadrons also suffer FSI

+ ...

Modeling all these reactions is necessary if the goal is to make predictions about the full hadron multiplicity in the final state.

- + The primary nucleon knocks out other nucleon(s).
- + The primary nucleon creates a pion.
- + The primary pion knocks out other nucleon(s).
- + The primary pion charge exchanges, e.g.: π^+ + n $\rightarrow \pi^0$ + p
- + The secondary hadrons also suffer FSI

+ ...

Modeling all these reactions is necessary if the goal is to make predictions about the full hadron multiplicity in the final state.

... But, do we really need that ???

Inelastic final-state interactions: "In Cascade we trust"

Fig. 13. Comparisons of event generator calculations with MINER ν A ν_{μ} CH CC π^+ data [290] (left) Q^2 and (right) kinetic energy. Both results include resonances at W < 1.8 GeV.
Inelastic final-state interactions: "In GiBUU we trust"

FIG. 12. Q^2 distribution of multiple charged pions in the MINERvA flux for a CH target with $W_{\rm rec} < 1.8$ GeV. Data are from 10

FIG. 8. Kinetic energy spectrum per nucleon of multiple charged pions in the MINERvA flux for a CH target with $W_{\rm rec} < 1.8 \text{ GeV}$ (solid line). The dashed line gives the 1-pion contribution. Data are from 10

Final remarks

IMPORTANT:

Classical <u>**CASCADE** models do NOT affect the inclusive* cross section</u>, therefore, one should use models of the primary vertex that provide realistic predictions of the inclusive cross section.

For consistency, **the model of the primary vertex should also provide full information on the hadron(s),** which will later propagate through the nucleus via cascade.

*inclusive = only the scattered lepton is detected.

Complete discussion in https://doi.org/10.1103/PhysRevD.107.053007

Final remarks

+ For the **reconstruction of the neutrino energy** one needs models for the different reaction channels contributing to the neutrino-nucleus cross section.

+ The (miss)modeling of neutrino-nucleus cross section is in the top-three of uncertainties in oscillation analyses.

The situation is worse for higher energy fluxes (DUNE), due to pion-production 'and beyond' mechanisms.

+ Small list of nuclear effects:

- ++ Initial state: binding energy, Fermi motion (or momentum distributions).
- ++ Primary vertex: Pauli blocking, distortion effects (or elastic FSI). Quantum mechanics needed.
- ++ Secondary interactions (or inelastic FSI): Cascade models (what else can we do?)
- + Combined and coordinated experimental and theoretical efforts are needed to move forward.

Thank you

ADDITIONAL SLIDES

The current operator in lepton-induced single pion production. An example: Feynman diagram for Δ -mediated one-pion production.

Figure from C. Praet's PhD Thesis

$$\mathbf{J}_{_{\mathrm{had}}}^{\mu} \sim \overline{u}(k_N, s_N) \Gamma^{\rho}_{\Delta \pi N} S_{\Delta, \rho \sigma} \Gamma^{\sigma \mu}_{W N \Delta} u(k_{N,i}, s_{N,i})$$

raugj@us.es

Sep 12, 2024

Resonances:

P33(1232), D13(1520), S11(1535), P11(1440)

ChPT background:

Above single-pion production and below DIS

Unphysical predictions at large invariant masses.

Figure: The model overshoots inclusive electronproton scattering data.

https://doi.org/10.1103/ PhysRevD.95.113007

Determining the oscillation probability

Oscillation experiment in a nutshell:

One wishes to determine the oscillation probability $P_{\alpha \rightarrow \beta}$ as function of the neutrino energy, so that the neutrino parameters can be extracted.

Number of events

$$\nu_{\alpha} \rightarrow \nu_{\beta}$$
 Adapted from M.Martini (NuFact17)

 $N_{\beta}(E_{\mathcal{V}}?) \sim \Phi_{\mathcal{V}_{\alpha}}(E_{\mathcal{V}}) \sigma_{\mathcal{V}_{\beta}}(E_{\mathcal{V}}) \mathcal{E}_{det}. P_{\mathcal{V}_{\alpha}} \rightarrow \mathcal{V}_{\beta}(\{\Theta\}, E_{\mathcal{V}})$
 ν flux
 ν cross

 ν flux
 ν cross

 section
 Detector

 ν Energy in the

 oscillation probability

Problem: A cross section model is needed, for two reasons:

1) To get $\mathbf{P}_{\alpha \rightarrow \beta}$ from the measured \mathbf{N}_{β} .

2) To reconstruct the neutrino energy.

Some model-data comparison

Nikolakopoulos et al. (2018) https://doi.org/10.1103/PhysRevD.97.093008

Sep 12, 2024

Two-nucleon knockout processes

Two-nucleon knockout processes

Two mechanisms give rise to the emission of two nucleons (apart from FSI):

Meson-exchange currents

Images from T. Van Cuyck's PhD Thesis

The same mean-field model is used to describe the bound and scattered nucleons:

Short-range correlations

Meson-exchanged currents

Other approaches (Superscaling coll.) consider MEC as the only contribution to the 2N-nucleon knockout responses. Fully relativistic calculation that includes both vector and axial current contributions.

Ruiz-Simo et al., arXiv:1604.08423

Meson-exchanged currents

Other approaches (Superscaling coll.) consider MEC as the only contribution to the 2N-nucleon knockout responses. Fully relativistic calculation that includes both vector and axial current contributions.

