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Overview
1.  Introduction and motivation

2.  Quasielastic and Single-Pion Production: the impulse approximation

3.  Nuclear effects

4.  Beyond Impulse Approximation: two-body currents

5.  Final remarks
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 Goals of the Neutrino Oscillation Program
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68,000 tons of liquid argon (LAr)
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68,000 tons of liquid argon (LAr)

But wait a minute. 
We don’t know the 

neutrino energy…
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68,000 tons of liquid argon (LAr)

But wait a minute. 
We don’t know the 

neutrino energy…

neutrino fluxes
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68,000 tons of liquid argon (LAr)

We’ll reconstruct 
it using our 
SUPER- 

detectors!!

But wait a minute. 
We don’t know the 

neutrino energy…
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talk in NuFact 2023
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Summarizing, 

cross section models are needed, for two reasons:

1) To get  P
a→b

  from the measured Nb.

2) To reconstruct the neutrino energy (keep watching). 
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What do we know about 
neutrino-nucleus cross sections
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Figure by T. Van Cuyck

For a fixed incoming 
energy and scattering 

angle, 

depending on the 
energy transferred, 

the lepton interacts 
differently with the 
nucleus (different 

reaction channels)

The nuclear response
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Superscaling approach Phys. Rev. D 91, 073004 (2015)

12C(e,e')

https://doi.org/10.1103/PhysRevD.91.073004
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Different reaction channels but same event topology

MicroBooNE CC inclusive
https://arxiv.org/abs/2306.12060 

https://arxiv.org/abs/2306.12060
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How does this affect the 
reconstruction of the neutrino energy?
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Example: 

1) QE-like event in MiniBooNE: muon and no pions 
are detected. Scattering angle and energy of the muon.

2) Reconstructed energy estimator:

This formula gives us an estimate of the energy of the neutrino.

3) One can compute the probability of the reconstructed energy EQE matching 
the true energy E: P(EQE|E)
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Probability density of the reconstructed energy E matching the true energy E

https://doi.org/10.1103/PhysRevC.98.054603 

_

https://doi.org/10.1103/PhysRevC.98.054603
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https://doi.org/10.1103/PhysRevC.98.054603 

Probability density of the reconstructed energy E matching the true energy E

+ The distributions are model dependent

_

https://doi.org/10.1103/PhysRevC.98.054603
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https://doi.org/10.1103/PhysRevC.98.054603 

Probability density of the reconstructed energy E matching the true energy E

MEC 2p-2h

+ The distributions are model dependent
+ Different reaction channels produce VERY different distributions

_

https://doi.org/10.1103/PhysRevC.98.054603
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Summarizing, 

GOOD cross section models are needed, for two reasons:

1) To get  P
a→b

  from the measured Nb.

2) To reconstruct the neutrino energy. 
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slide from Elena’s 
talk in NuFact 2023
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Quasielastic scattering
and 

Single-Pion production  



raugj@us.es Sep 12, 2024 23

How do we model 

Quasielastic scattering
and 

Single-Pion production?
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How do we model 

Quasielastic scattering
and 

Single-Pion production?

…

The IMPULSE APPROXIMATION (IA)
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Single-Pion Production
(in the Impulse Approximation)
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Single-Pion Production
(in the Impulse Approximation)
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(in the Impulse Approximation)
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Single-Pion Production
(in the Impulse Approximation)
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Single-Pion Production
(in the Impulse Approximation)
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Single-Pion Production
(in the Impulse Approximation)
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Nuclear effects in the cross sections
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Small list of nuclear and nucleonic effects in the cross 
sections: 

+ Initial state: binding energy, Fermi motion 
(or momentum distributions), short- and long-range correlations

+ Interaction: nucleon form factors, Pauli blocking, 
 beyond one-body currents

+ Final state interactions: 
++ Distortion effects or elastic FSI
++ Inelastic FSI (modeled with intranuclear cascade)

 

All this, and more, will be discussed in WG2 parallel sessions at NuFact 2024 workshop.

PhysRevC.100.04
4620

https://indico.fnal.gov/event/63406/
http://dx.doi.org/10.1103/PhysRevC.100.044620
http://dx.doi.org/10.1103/PhysRevC.100.044620
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Single-Pion Production
(in the Impulse Approximation)
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Praet et al. (2009), https://doi.org/10.1103/physrevc.79.044603

Figure: CC neutrino-12C induced SPP.

Free nucleon 

versus 

RFG 
(it accounts for Fermi motion, the 

initial state is an infinite gas of 
fermions)

versus

PWIA
(Fermi motion and the shell 

structure are accounted for, the 
pion and final nucleon are plane 

waves)

https://doi.org/10.1103/physrevc.79.044603
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Praet et al. (2009), https://doi.org/10.1103/physrevc.79.044603

Free nucleon 

versus 

RFG 
(it accounts for Fermi motion, the 

initial state is an infinite gas of 
fermions)

versus

PWIA
(Fermi motion and the shell 

structure are accounted for, the 
pion and final nucleon are plane 

waves)
Figure: CC neutrino-12C induced SPP.

Fermi motion

https://doi.org/10.1103/physrevc.79.044603
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Free nucleon 

versus 

RFG 
(it accounts for Fermi motion, the 

initial state is an infinite gas of 
fermions)

versus

PWIA
(Fermi motion and the shell 

structure are accounted for, the 
pion and final nucleon are plane 

waves)

12C(e,e’)
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Free nucleon 

versus 

RFG 
(it accounts for Fermi motion, the 

initial state is an infinite gas of 
fermions)

versus

PWIA
(Fermi motion and the shell 

structure are accounted for, the 
pion and final nucleon are plane 

waves)

12C(e,e’)

QE (full model, 
with elastic FSI)
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Single-Pion Production
(in the Impulse Approximation)
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Pauli blocking and elastic FSI
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Inclusive electron scattering at low q:

Phys. Rev. C 100 045501 (2019)

Pauli blocking and elastic FSI

Plane waves

https://doi.org/10.1103/PhysRevC.100.045501


raugj@us.es Sep 12, 2024 42

Inclusive electron scattering at low q:

Phys. Rev. C 100 045501 (2019)

Pauli blocking and elastic FSI

Plane waves

https://doi.org/10.1103/PhysRevC.100.045501
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Distorted waves
Orthogonalization

Inclusive electron scattering at low q:

Pauli blocking and elastic FSI

Phys. Rev. C 100 045501 (2019)

Plane waves

https://doi.org/10.1103/PhysRevC.100.045501
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Inclusive electron scattering at low q:

Phys. Rev. C 100 045501 (2019)

Pauli blocking and elastic FSI

Distorted waves

Plane waves

https://doi.org/10.1103/PhysRevC.100.045501
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Distortion of the outgoing nucleon (elastic FSI in a Quantum Mechanical way) 
is important at intermediate energies too !!!

Inclusive electron scattering at intermediate q:
Phys. Rev. C 100 045501 (2019)

Pauli blocking and elastic FSI

https://doi.org/10.1103/PhysRevC.100.045501
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Pauli blocking and elastic FSI

https://doi.org/10.1103/PhysRevC.100.045501

MicroBooNE data, neutrino-nucleus CCQE-like scattering:

https://doi.org/10.1103/PhysRevC.100.045501
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MicroBooNE data, neutrino-nucleus CCQE-like scattering:

Pauli blocking and elastic FSI

https://doi.org/10.1103/PhysRevC.100.045501

https://doi.org/10.1103/PhysRevC.100.045501
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Single-Pion Production
(in the Impulse Approximation)
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Alvarez-Ruso et al. (2007), http://dx.doi.org/10.1103/PhysRevC.75.055501 

coherent pion production

Distortion of the pion 
wave function

(or Elastic FSI of the 
pion)

http://dx.doi.org/10.1103/PhysRevC.75.055501
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Alvarez-Ruso et al. (2007), http://dx.doi.org/10.1103/PhysRevC.75.055501 

coherent pion production

Distortion of the pion 
wave function

(or Elastic FSI of the 
pion)

http://dx.doi.org/10.1103/PhysRevC.75.055501
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Alvarez-Ruso et al. (2007), http://dx.doi.org/10.1103/PhysRevC.75.055501 

coherent pion production

???

http://dx.doi.org/10.1103/PhysRevC.75.055501
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Single-Pion Production
(in the Impulse Approximation)
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Alvarez-Ruso et al. (2007), http://dx.doi.org/10.1103/PhysRevC.75.055501 

coherent pion production

In-medium 
modification of the 

resonance properties

http://dx.doi.org/10.1103/PhysRevC.75.055501
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Franco-Patino et al. (2022), https://doi.org/10.1103/PhysRevD.106.113005 

MINERνA no-pion ν
μ
-12C cross section

 (GENIE)

https://doi.org/10.1103/PhysRevD.106.113005
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What is this 
(quite large) 

“Other” 
contribution??? 

Franco-Patino et al. (2022), https://doi.org/10.1103/PhysRevD.106.113005 

MINERνA no-pion ν
μ
-12C cross section

 (GENIE)

https://doi.org/10.1103/PhysRevD.106.113005
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“Other”: 
pion absorption contribution 

evaluated using GENIE

Franco-Patino et al. (2022), https://doi.org/10.1103/PhysRevD.106.113005 

 (GENIE)

MINERνA no-pion ν
μ
-12C cross section

https://doi.org/10.1103/PhysRevD.106.113005
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J. García-Marcos et al., Towards a more complete description of 
nucleon distortion in lepton-induced single-pion production at low-Q2
https://doi.org/10.48550/arXiv.2310.18056 

Distortion of the 
nucleon wave function

(or Elastic FSI of the 
nucleon)

and

Asymptotic 
approximation for the 

SPP operator
(or local versus non-local 

operator)

https://doi.org/10.48550/arXiv.2310.18056
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Beyond Impulse Approximation: 
two-body currents in the 1p-1h sector
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https://arxiv.org/abs/2203.09996v3
https://arxiv.org/abs/2306.10823 Beyond Impulse Approximation: 

two-body currents in the 1p-1h sector

https://arxiv.org/abs/2203.09996v3
https://arxiv.org/abs/2306.10823
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Carbon 12 responses
green lines from Lovato et al. 
PRL 117, 082501 (2016)

q=380 MeV

q=570 MeV

q=300 MeV

By T. Franco-Munoz 
as part of her PhD.

https://arxiv.org/abs/2306.10823

https://doi.org/10.1103/PhysRevLett.117.082501
https://arxiv.org/abs/2306.10823
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 40Ca 
electromagnetic 
inclusive cross 

sections

By T. Franco-Munoz 
as part of her PhD.

https://arxiv.org/abs/2203.09996v3

https://arxiv.org/abs/2203.09996v3
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Inelastic final-state interactions
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Inelastic final-state interactions

+ The primary nucleon knocks out other nucleon(s).
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+ The primary nucleon creates a pion.
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Inelastic final-state interactions

+ The primary nucleon knocks out other nucleon(s).

+ The primary nucleon creates a pion.

+ The primary pion knocks out other nucleon(s).

+ The primary pion charge exchanges, e.g.:  p+ + n→ p0 + p 



raugj@us.es Sep 12, 2024 69

Inelastic final-state interactions

+ The primary nucleon knocks out other nucleon(s).

+ The primary nucleon creates a pion.

+ The primary pion knocks out other nucleon(s).

+ The primary pion charge exchanges, e.g.:  p+ + n→ p0 + p 

+ The secondary hadrons also suffer FSI

+ ...
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Inelastic final-state interactions

+ The primary nucleon knocks out other nucleon(s).

+ The primary nucleon creates a pion.

+ The primary pion knocks out other nucleon(s).

+ The primary pion charge exchanges, e.g.:  p+ + n→ p0 + p 

+ The secondary hadrons also suffer FSI

+ ...

Modeling all these reactions is necessary if the goal is to make predictions 
about the full hadron multiplicity in the final state.   
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Inelastic final-state interactions

+ The primary nucleon knocks out other nucleon(s).

+ The primary nucleon creates a pion.

+ The primary pion knocks out other nucleon(s).

+ The primary pion charge exchanges, e.g.:  p+ + n→ p0 + p 

+ The secondary hadrons also suffer FSI

+ ...

Modeling all these reactions is necessary if the goal is to make predictions 
about the full hadron multiplicity in the final state.   

… But, do we really need that ???
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Inelastic final-state interactions: “In Cascade we trust”
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Inelastic final-state interactions: “In GiBUU we trust”
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IMPORTANT:

Classical CASCADE models do NOT affect the inclusive* cross section, therefore, one 
should use models of the primary vertex that provide realistic predictions of the inclusive 
cross section.

For consistency, the model of the primary vertex should also provide full information 
on the hadron(s), which will later propagate through the nucleus via cascade.

*inclusive = only the scattered lepton is detected.

Complete discussion in https://doi.org/10.1103/PhysRevD.107.053007 

Final remarks

https://doi.org/10.1103/PhysRevD.107.053007
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+ For the reconstruction of the neutrino energy one needs models for the different reaction channels 
contributing to the neutrino-nucleus cross section. 

+ The (miss)modeling of neutrino-nucleus cross section is in the top-three of uncertainties in oscillation 
analyses. 

         The situation is worse for higher energy fluxes (DUNE), due to pion-production ‘and beyond’ 
         mechanisms.

+ Small list of nuclear effects: 
++ Initial state: binding energy, Fermi motion (or momentum distributions).

 ++ Primary vertex: Pauli blocking, distortion effects (or elastic FSI). Quantum mechanics needed.

++ Secondary interactions (or inelastic FSI): Cascade models (what else can we do?)

+ Combined and coordinated experimental and theoretical efforts are needed to move forward.

Final remarks
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Thank you
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ADDITIONAL SLIDES
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Figure from C. Praet’s
PhD Thesis

Jm ~ 
had

The current operator in lepton-induced single pion production. 
An example: Feynman diagram for ∆-mediated one-pion production.
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Resonances: 
P33(1232), D13(1520), 
S11(1535), P11(1440)

ChPT background:
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Above single-pion production 
and below DIS
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Unphysical predictions at large invariant masses. 

Figure: The model overshoots inclusive electron-
proton scattering data.  

Low-energy model 
(resonances + ChPT bg) https://doi.org/10.1103/PhysRevD.95.113007

https://doi.org/10.1103/PhysRevD.95.113007
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Sample without cuts in W 

https://doi.org/10.1103/
PhysRevD.95.113007

https://doi.org/10.1103/PhysRevD.95.113007
https://doi.org/10.1103/PhysRevD.95.113007
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Oscillation experiment in a nutshell:

One wishes to determine the oscillation probability P
a→b

 as function of the neutrino energy, so that the 

neutrino parameters can be extracted.

Problem: A cross section model is needed, for two reasons:

1) To get  P
a→b

  from the measured Nb.

2) To reconstruct the neutrino energy. 

Determining the oscillation probability

Adapted from M.Martini (NuFact17)
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MINERvA antineutrino CC 1p0. MINERvA neutrino CC 1p0. 

Nikolakopoulos et al. (2018) https://doi.org/10.1103/PhysRevD.97.093008

Some model-data comparison

https://doi.org/10.1103/PhysRevD.97.093008
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Figure by T. Van Cuyck

Two-nucleon knockout processes
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Meson-exchange currentsShort-range correlations

Two mechanisms give rise to the emission of two nucleons (apart from FSI):

The same mean-field model is used to describe the bound and scattered nucleons:

Images from T. Van 
Cuyck's PhD Thesis

Two-nucleon knockout processes



raugj@us.es Sep 12, 2024 89

MiniBooNE

(QE-like: QE+2p2h)

Van Cuyck et al., arXiv:1708.03723

T2K 
(inclusive data:

QE, 2p2h, pions, DIS)

Short-range correlations
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Meson-exchanged currents

Ruiz-Simo et al., arXiv:1604.08423

Other approaches (Superscaling coll.) consider MEC as the only contribution to the 2N-nucleon 
knockout responses. Fully relativistic calculation that includes both vector and axial current 
contributions. 
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Megias et al., 
arXiv:1607.08565v2

MiniBooNE

(QE-like: QE+2p2h)

T2K 
(inclusive data:

QE, 2p2h, pions, DIS)

Other approaches (Superscaling coll.) consider MEC as the only contribution to the 2N-nucleon 
knockout responses. Fully relativistic calculation that includes both vector and axial current 
contributions. 

Meson-exchanged currents
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