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An interesting time, personally

e QOctober: 2024 Fast ML for Science Conference

— https://indico.cern.ch/e/fastm|2024
* November: DOE Office of Science Al Roundtable on Experiments and Facilities

— Including biology, environmental, material, fusion sciences, HEP and nuclear physics
* November: DOE-wide discussions on the role of supercomputing and Al

— FASST initiative: Frontiers in Al for Science, Security and Technology

Huge credit fo many folks and stimulating discussions!
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https://indico.cern.ch/e/fastml2024

What is in this talk and what is not

d x Al for physics analysis including theory, simulation, reconstruction, and
interpretation - let’s just assume physics + Al is awesome :)

° Al os it opplies to detectors and instruments* tfo:

— Accelerafe new physics discoveries
* Unearth new physics signatures much more quickly
* Operate instruments and detectors much more efficiently
— Enabling faster analysis
— Requiring less data needed to get to the same results

— Reducing operational resources and increasing long term reliability

3¢ Fermilab
3 * nearly everything | will say applies to particle accelerators too



Outline

* Fast and Slow

* Fast ML and hardware codesign
* Fast and Slow ML together
e Slow ML & Real-Time
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Types of compute
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Types of compute

Credit: Dorothea vom Bruch

CPU GPU FPGA
Latenc, 0 (10) s 0 (100) Deterministic,
’ " Hs O (100) ns
Connectivity to any
dat i
/O with processor | Ethernet, USB, PCle PCle, Nvlink ata source via

printed circuit board

(PCB)
S high-level
Low entry level ome g . eve
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Engineering cost (programmable with pleD A. OpenCL traditionally VHDL,
c++, python, etc.) e;tc I)) ’ Verilog (specialized
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Opt d for fixed
floating point O (10) TFLOPs O (10) TFLOPs primizec for fixe
point performance
performance
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Serial / parallel performance, Optimized for Optimized for
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vector processing
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ASICs
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Fast ML for science and the exireme edge

“Scientific discoveries come from groundbreaking ideas and the capability to
validate those ideas by testing nature at new scales - finer and more precise
temporal and spatial resolution. This is leading to an explosion of data that
must be interpreted, and ML is proving a powerful approach. The more
efficiently we can test our hypotheses, the faster we can achieve discovery.
To fully unleash the power of ML and accelerate discoveries, it is necessary
to embed it into our scientific process, into our instruments and detectors.”

Applications and Techniques for Fast Machine Learning in Science
https://doi.org/10.3389/fdata.2022.787421



Why Al?

Universal function approximation - fit with customizable objective:
f(inputs; lots of parameters) = output

* Expressive & powerful: able to find patterns and correlations in high-dimensional data
not explicitly accounted for; can unlock large gains in performance

* Adaptive & flexible: able fo adapt to new data, conditions; handles all different types of
data representations

2= Fermilab



Fast ML for Science

The Fast ML for Science community aims
to bring seemingly different domains
together to develop techniques, tools, and
platforms for challenges that far outpace
industry.
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Fast ML for Science

The Fast ML for Science community aims
to bring seemingly different domains

together to develop techniques, tools, and

platforms for challenges that far outpace
industry.

MLCommons launches machine learning benchmark for

devices like smartwatches and voice assistants
by Ben Wodecki 6/16/2021

" : With experts from Qualcomm, Fermilab, and
. Google aiding in its development

MLCommons, the open engineering
consortium behind the MLPerf benchmark test,
has launched a new measurement suite aimed
at ‘tiny’ devices like smartwatches and voice
assistants.

MLPerf Tiny Inference is designed to compare
performance of embedded devices and models

with a fantnrint nf 1NNKR ar lace by moaaciirinn
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Fast and slow control
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Fast and slow control
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Fast and slow control
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Fast and slow control
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Image credit: A. Thea

Fast control

Immediate response to dynamics of
the experiment and data readout

Event timing, triggering, etc.

Slow control

Detector stability over minutes,
days, weeks, months,...

Monitoring and controlling
operational parameters: electronics
gains, pedestals, calibrations, efc.

2= Fermilab
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...on reducing biases in
our “fast" decision-
making selves
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Life cycle

Projectization/

of instruments, detectors, facilities

Construction

A

Integrated Design of Next-
Generation Instruments and
Detectors

Analysis and

’

Ultra-efficient Sensing and
Inference for Time-Critical
Processes

Adaptive optimization and
control for complex systems
and facilities

Reduce operational load and
preserve exepertise through
Information Synthesis connecting
experiments and collaborations

A

Scientific Outputs

13
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Outline

* Fast and Slow

* Fast ML and hardware codesign
* Fast and Slow ML together
* Slow ML & Real-Time
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Fast ML example applications
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Fast ML example applications

B
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spiking convolutional NN
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=
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Pixel information in the trigger brings
fundamentally new capabilities o LHC
experiments - but rates are massive!
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Fast ML example applications
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https.//fastmachinelearning.org/smart-pixels/

Pixel information in the trigger brings
fundamentally new capabilities o LHC
experiments - but rates are massive!
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Fast ML example applications
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Fast ML example applications

FPGA filter stack
~Hs latency

How can we
reduce biases in
trigger selections?

17

Al circuit for ultrafast inference on FPGA

Inference time: 280 ns
Throughput: 104 Gb/s

i~ Dense Network
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Fast ML science applications
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https://github.com/openquantumhardware/qick

Moving data expensive, computing cheap

Relative Energy Cost

Operation: Energy (pJ)

8b Add 0.03 _
16b Add 005 Ml I
32b Add o |l |
16b FP Add 04 [N _
32b FP Add oo [N l
8b Mult 02 | i
32b Mult PR —— |
16b FP Mult 11 [ _
32b FP Mult 37 [ I
32b SRAM Read (8KB) R ——— _
32b DRAM Read s40 [

Adapted from Horowitz

s

10 100 1000 10000

2= Fermilab
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Efficient machine learning

Xm = 8m (Wm,m—lxm—l + bm)
Nm
Nwm

Matrix-vector multiply

> O Non-linear activation function

M hidden layers > O
.
H
H

O00=

-0

output layer

E
=1
g
g
Q O PETTTYTITTIrrrLS
3
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Efficient machine learning

Xm = 8m (Wm,m—lxm—l + bm)

* Computation parallelization/vectorization Ny E‘S - "~
and in-memory compute (architecture) O O Nor \ Matrix-vector multiply
O O >O Non-linear activation function
O ;e >0
* Quantization, reduced precision
— For ML, 32-bit floating point is often : >0
. ol \'
overkill e O

— Integer/fixed-point math at
16,8,7,6,5...1 bits

* Compression, pruning

— maintain the same performance while
removing low weight synapses and
neurons

2= Fermilab
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Efficient machine learning

* Computation parallelization/vectorization
and in-memory compute (architecture)

* Quantization, reduced precision

— For ML, 32-bit floating point is often
overkill

— Integer/fixed-point math at
16,8,7,6,5...1 bits

* Compression, pruning

— maintain the same performance while
removing low weight synapses and
neurons

20

g

Xm = 8m (Wm,m—lxm—l + bm)

layer m

mult

mult

mult

mult

o

mult

=

mult

N7 O \
O O Num Matrix-vector multiply
O O >O Non-linear activation function
O . M hidden layers > O
: : S -
O ) outp@tlayer
input layer O
——- mult | reuse = 4

use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

afF Fermiiap



Efficient machine learning

Xm = 8m (Wm,m—lxm—l + bm)

* Computation parallelization/vectorization Ny E‘S - "~
and in-memory compute (architecture) O O Nor \ Matrix-vector multiply
O O >O Non-linear activation function
O ;e >0
* Quantization, reduced precision
— For ML, 32-bit floating point is often : >0
overkill e O

— Integer/fixed-point math at
16,8,7,6,5...1 bits

before pruning after pruning

pruning _ _ _

* Compression, pruning synapses

— maintain the same performance while
removing low weight synapses and
neurons

pruning
neurons

-———

2= Fermilab
20



Hardware - algorithm codesign

Keras

O PyTorch hIS 4 ml

€ ONNX

https://pypi.org/project/his4ml/
>1.3k Github stars,
~1.2k downloads last month

Quantized

R Hardware

vivapo*> Menior

QKeras (Google) A Siemens Business
Brevitas (AMD)
HAWQ (UC Berkeley)
QONNX (Microsoft/AMD)
Aunme

2= Fermilab
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https://www.nature.com/articles/s42256-021-00356-5
https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/1905.03696
https://arxiv.org/abs/2206.07527
https://pypi.org/project/hls4ml/

Hardware - algorithm codesign

Data representation
— ML architecture

Physics requirements

Latency?
Pipeline Interval?

Resources? Area/power?
Radiation? Cryo?

22

Neural architecture search/
Hyperparameter optimization
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Hardware - algorithm codesign

Data representation
— ML architecture Neural architecture search/

. . Hyperparameter optimization
Physics requirements

Quantize network

Relative Energy Cost
Operation: Energy (pJ)
Latency? 8b Add 0.03
o o 16b Add 0.05
Pipeline Interval? 32 Add o1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
Resources? Area/power? 325 Ml a1 hly
Radiation? Cryo? 16 FP Mult 1.1 TE .
32b FP Mult 3.7 ir tic
32b SRAM Read (8KB) 5
32b DRAM Read 640 I
Adapted from Horowitz 1 10 100 1000 10000

2= Fermilab
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Hardware - algorithm codesign

Data representation
— ML architecture

Physics requirements

Latency?
Pipeline Interval?

Resources? Area/power?
Radiation? Cryo?

24

Neural architecture search/
Hyperparameter optimization

Quantize network

Intermediate (quantized)
representations

Quant

0 (32)

1=0.03125
2=0
3=6

Quant
1=10.015625

MatMul

0 (32x32)
1=0.03125
2=0
2-R
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Hardware - algorithm codesign

Data representation
— ML architecture

Physics requirements

Latency?
Pipeline Interval?

Resources? Area/power?
Radiation? Cryo?

25

Neural architecture search/
Hyperparameter optimization

Quantize network

Intermediate (quantized)
representations

Pruning/sparsity?

before pruning after pruning

pruning __
synapses

pruning
neurons

-——

3= Fermilab



Hardware - algorithm codesign
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Data representation
— ML architecture

Physics requirements

Latency?
Pipeline Interval?

Resources? Area/power?
Radiation? Cryo?

Parallelization i i

Neural architecture search/
Hyperparameter optimization

Quantize network

Intermediate (quantized)
representations

Pruning/sparsity?

Microarchitecture

reuse =4
use 1 multiplier 4 times

reuse =2
use 2 multipliers 2 times each

reuse =1

use 4 mulplers 1 time each # Ferm i Iab

it




Hardware - algorithm codesign

Data representation
— ML architecture

Physics requirements

Latency?
Pipeline Interval?

BNL711 FELIX Firmware Floorplanning

[power?
ryo?

27

Synthesize, validate design,

satisfy design rules/timing

Neural architecture search/
Hyperparameter optimization

Quantize network

Intermediate (quantized)
representations

Pruning/sparsity?

Microarchitecture

Parallelization
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Hardware - algorithm codesign

Data representation
— ML architecture Neural architecture search/

. . Hyperparameter optimization
Physics requirements

Quantize network

Intermediate (quantized)

Latency? representations

Pipeline Interval? Multi-objective

design space optimization
Pruning/sparsity?
Resources? Area/power?

Radiation? Cryo?

Microarchitecture

Synthesize, validate design,

satisfy design rules/timing Parallelization

2= Fermilab
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Codesign with ol

can you help me develop design a 4 layer MLP using QKeras that
can be translated to AMD FPGAs using hls4ml?

29
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Codesign with ol

can you help me develop design a 4 layer MLP using QKeras that
can be translated to AMD FPGAs using hls4ml?

2. Design Your Quantized MLP Using QKeras

Here's how you can define a 4-layer MLP with quantized weights and activations:

python (3 Copy code

import tensorflow as tf

from tensorflow.keras.models import Sequential

from gkeras import QDense, QActivation

from gkeras.quantizers import quantized_bits, quantized_relu

# Define input and output sizes
input_size = 32 # Replace with your actual input feature size

output_size = 10 # Replace with your actual number of classes

# Define quantizers
weight_quantizer = quantized_bits(8, @, alpha=1) # 8-bit quantization
activation_quantizer = quantized_relu(8, 0) # 8-bit quantization

# Build the model
model = Sequential([

QDense(64, input_shape=(input_size,),
kernel_quantizer=weight_quantizer,
bias_quantizer=weight_quantizer,
name='fcl'),

QActivation(activation_quantizer, name='actl'),

for w

for al

I
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Codesign with ol

can you help me develop design a 4 layer MLP using QKeras that
can be translated to AMD FPGAs using hls4ml?

2. Design Your Quantized MLP Using QKeras

Here's how you can define a 4-layer MLP with quantized weights and activations:

python

import tensorflow as tf

from tensorflow.keras.models import Sequential

from gkeras import QDense, QActivation

from gkeras.quantizers import quantized_bits, quantized_relu

# Define input and output sizes
input_size = 32 # Replace with your actual input feature size
output_size = 10 # Replace with your actual number of classes
# Define quantizers

weight_quantizer = quantized_bits(8, @, alpha=1)

(3 Copy code

# 8-bit quantization for

activation_quantizer = quantized_relu(8, 0) # 8-bit quantization for

# Build the model
model = Sequential([

QDense(64, input_shape=(input_size,),
kernel_quantizer=weight_quantizer,
bias_quantizer=weight_quantizer,
name='fcl'),

QActivation(activation_quantizer, name='actl'),

w(

at

I

3. Train Your Model
4. Prepare for Conversion with his4ml

5. Convert the Model Using his4ml

Specify the FPGA part number corresponding to your AMD FPGA. Since AMD acquired Xilinx, you

can use Xilinx part numbers.

python

hls_model = hls4ml.converters.convert_from_keras_model(
model,
hls_config=config,
output_dir="hls4ml_prj',
part="'xcvu9p-flgb2104-2-i'

(9 Copy code

4

# Replace with your specific FPGA part number

2= Fermilab



Codesign with ol

can you help me develop design a 4 layer MLP using QKeras that
can be translated to AMD FPGAs using hls4ml|?

2. Design Your Quantized MLP Using QKeras

Here's how you can define a 4-layer MLP with quantized weights and activations:

python

import tensorflow as tf

from tensorflow.keras.models import Sequential

from gkeras import QDense, QActivation

from gkeras.quantizers import quantized_bits, quantized_relu

input_size = 32

output_size = 10

# Define
# DeTlne

quantizers

weight_quantizer = quantized_bits(8, @, alpha=1)

activation_quantizer = quantized_relu(8, 0) # 8-bit quantizatio

model = Sequential([

QDense(64, input_shape=(input_size,),
kernel_quantizer=weight_quantizer,
bias_quantizer=weight_quantizer,
name="'fcl'),

QActivation(activation_quantizer, name='actl'),

(3 Copy code

I

3. Train Your Model
4. Prepare for Conversion with his4ml

5. Convert the Model Using his4ml

Specify the FPGA part number corresponding to your AMD FPGA. Since AMD acquired Xilinx, you

can use Xilinx part numbers.

python (9 Copy code

hls_model = hls4ml.converters.convert_from_keras_model(
model,
hls_config=config,
output_dir="hls4ml_prj',
part='xcvu9p-flgb2104-2-i' # Replace with your specific FPGA part number

6. Compile and Build the HLS Model
7. Validate the HLS Model

Compare the outputs of the original Keras model and the HLS model to ensure consistency.

python (9 Copy cod

import numpy as np

# Generate some test data

X_test = np.random.rand(100, input_size)

8. Synthesize the Design Using Vivado HLS
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Codesign with ol

how many FPGA resources will this model take?

30
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Codesign with ol

how many FPGA resources will this model take?

Estimating Resource Utilization
While | can't provide exact numbers without running the synthesis, | can guide you on how to
estimate and obtain the resource utilization for your model.
1. Understanding the Resource Components
* Lookup Tables (LUTs): Implement combinational logic.
* Flip-Flops (FFs): Store state information.
* Block RAMs (BRAMSs): Used for on-chip memory storage.
« Digital Signal Processing (DSP) Slices: Perform arithmetic operations like multiplication and
addition.
2. Factors Influencing Resource Usage
« Neuron Count: More neurons increase resource consumption.
« Bit-widths: Higher bit-widths for weights and activations consume more resources.
« Parallelism: Lower ReuseFactor values increase parallelism and resource usage.
* Pipelining: Increases FF usage but can improve performance.

» Optimizations: Strategies like resource sharing can reduce usage.

30
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how many FPGA resources will this model take?

Estimating Resource Utilization
While | can't provide exact numbers without running the synthesis, | can guide you on how to
estimate and obtain the resource utilization for your model.
1. Understanding the Resource Components
* Lookup Tables (LUTs): Implement combinational logic.
* Flip-Flops (FFs): Store state information.
* Block RAMs (BRAMSs): Used for on-chip memory storage.
« Digital Signal Processing (DSP) Slices: Perform arithmetic operations like multiplication and
addition.
2. Factors Influencing Resource Usage
« Neuron Count: More neurons increase resource consumption.
« Bit-widths: Higher bit-widths for weights and activations consume more resources.
« Parallelism: Lower ReuseFactor values increase parallelism and resource usage.
* Pipelining: Increases FF usage but can improve performance.

» Optimizations: Strategies like resource sharing can reduce usage.

30

Estimating Based on Model Parameters

To get a rough estimate, consider the following:

1. Neuron Connections

Each fully connected layer has input_size x output_size weights.

First Layer (fc1): 32 inputs * 64 outputs = 2048 weights
Second Layer (fc2): 64 inputs % 64 outputs = 4096 weights
Third Layer (fc3): 64 inputs x 64 outputs = 4096 weights

Output Layer: 64 inputs * 10 outputs = 640 weights

2. Bit-width Impact

With 8-bit quantization:

Total Weights Memory: (2048 + 4096 + 4096 + 640) weights * 8 bits = 88 KB

3. DSP Slice Usage

Each multiplication can use a part of a DSP slice:

Total Multiplications per Inference: Sum of weights.

However, hls4ml can optimize to reuse DSP slices depending on the ReuseFactor .

4. ReuseFactor Impact

ReuseFactor = 1: Maximum parallelism, highest resource usage.

Higher ReuseFactor: Reduces parallelism, lowers resource usage but increases latency.

2= Fermilab



Codesign with ol

how many FPGA resources will this model take?

Estimating Resource Utilization

While | can't provide exact numbers without running the synthesis, | can guide you on how to

estimate and obtain the resource utilization for your model.

1. Understanding the Resource Components

Lookup Tables (LUTs): Implement combinational logic.
Flip-Flops (FFs): Store state information.
Block RAMs (BRAMSs): Used for on-chip memory storage.

Digital Signal Processing (DSP) Slices: Perform arithmetic operations like multiplication and
addition.

2. Factors Influencing Resource Usage

30

Neuron Count: More neurons increase resource consumption.

Bit-widths: Higher bit-widths for weights and activations consume more resources.
Parallelism: Lower ReuseFactor values increase parallelism and resource usage.
Pipelining: Increases FF usage but can improve performance.

Optimizations: Strategies like resource sharing can reduce usage.

Estimating Based on Model Parameters

To get a rough estimate, consider the following:

1. Neuron Connections

Each fully connected layer has input_size x output_size weights.

First Layer (fc1): 32 inputs * 64 outputs = 2048 weights
Second Layer (fc2): 64 inputs % 64 outputs = 4096 weights
Third Layer (fc3): 64 inputs x 64 outputs = 4096 weights

Output Layer: 64 inputs * 10 outputs = 640 weights

2. Bit-width Impact

With 8-bit quantization:

Total Weights Memory: (2048 + 4096 + 4096 + 640) weights * 8 bits = 88 KB

3. DSP Slice Usage

Each multiplication can use a part of a DSP slice:

Total Multiplications per Inference: Sum of weights.

However, hls4ml can optimize to reuse DSP slices depending on the ReuseFactor .

4. ReuseFactor Impact

ReuseFactor = 1: Maximum parallelism, highest resource usage.

Higher ReuseFactor: Reduces parallelism, lowers resource usage but increases latency.

Conclusion

Exact Resource Usage: Can only be determined by synthesizing the design and reviewing
the reports.

Estimation: Use the factors above to estimate resource usage.

Optimization: Adjust model complexity, quantization bit-widths, and hils4ml configurations to
meet resource constraints.

ab



Estimating Based on Model Parameters

n | ]
CO d e s I g n w I .I. h 0] To get a rough estimate, consider the following:

1. Neuron Connections

how many FPGA resources will this model take? Each fully connected layer has input_size * output_size weights.
« First Layer (fc1): 32 inputs * 64 outputs = 2048 weights
« Second Layer (fc2): 64 inputs x 64 outputs = 4096 weights

Estimating Resource Utilization « Third Layer (fc3): 64 inputs % 64 outputs = 4096 weights

While | can't provide exact numbers without running the synthesis, | can guide you on how to « OutputLayer: 64 inputs % 10 outputs = 640 weights

estimate and obtain the resource utilization for your model.
2. Bit-width Impact

With 8-bit quantization:
« Total Weights Memory: (2048 + 4096 + 4096 + 640) weights x 8 bits = 88 KB
3. DSP Slice Usage

Each multiplication can use a part of a DSP slice:

« Total Multiplications per Inference: Sum of weights.

However, hlsdml can optimize to reuse DSP slices depending on the ReuseFactor .

4. ReuseFactor Impact
* ReuseFactor = 1: Maximum parallelism, highest resource usage.

« Higher ReuseFactor: Reduces parallelism, lowers resource usage but increases latency.

« Parallelism: Lower ReuseFactor values increase parallelism and resource usage.

« Pipelining: Increases FF usage but can improve performance.
Exact Resource Usage: Can only be determined by synthesizing the design and reviewing

» Optimizations: Strategies like resource sharing can reduce usage. the reports.

« Estimation: Use the factors above to estimate resource usage.

« Optimization: Adjust model complexity, quantization bit-widths, and his4ml configurations to
meet resource constraints. ab
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wa-hlsttml & IuiGNN o ca oent Ao

* Build a surrogate model of histml to predict resources without
running costly synthesis steps

* First dataset of its kind
— > 100k models on NRP
— Simple to start: MLPs

* Build a graph NN which predicts network FPGA resources
— Each layer of the network is a layer in the graph

— In distribution accuracy
is ~few %

32
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https://indico.cern.ch/event/1387540/contributions/6153600/
https://indico.cern.ch/event/1387540/contributions/6153564/

wu-hlsl'l'ml & IUiGNN https:/indico.cern.ch/event/1 7wak§t,r?PI(t)!t:iko1vetal

* Build a surrogate model of histml to predict resources without
running costly synthesis steps

* First dataset of its kind
— > 100k models on NRP

- S|mp|e -I-O S-I-Gr-l- MLPS Hyperparameter Range Step Size
. . . Input Features 8-128 8
* Build a graph NN which predicts network FPGA resources -
irst Layer Neurons 8-128 8
— Each layer of the network is a layer in the graph SEnAE s | BT
. . . Weight and Bias Precision 2-16 2
— In distribution accuracy (Total Bits)
|S ~.I:ew 0/0 Target Reuse Factor 1024-4093 1023
3¢ Fermilab
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https://indico.cern.ch/event/1387540/contributions/6153600/
https://indico.cern.ch/event/1387540/contributions/6153564/

WU'hlS"I'ml & IUiGNN https://indico.cern.chieventt 7wak§t,r?PI(t)!t:iko1veta| £

* Build a surrogate model of histml to predict resources without
running costly synthesis steps

* First dataset of its kind
— > 100k models on NRP

- S|mp|e -I-O S-I-Gr-l- MLPS Hyperparameter Range Step Size
. . . Input Features 8-128 8
* Build a graph NN which predicts network FPGA resources -
irst Layer Neurons 8-128 8
— Each layer of the network is a layer in the graph SEnAE s | BT
. . . Weight and Bias Precision 2-16 2
— In distribution accuracy - (Total Bits)
|S ~.I:ew 0/0 Prediction Errors - Boxplots T Mean Target Reuse Factor 1024-4093 1023

BRAM DSP FF [ CYCLES # Fermilab
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Fast ML example applications

33
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Fast ML for Science
benchmark tasks
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Beam control
—
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https://newsroom.sw.siemens.com/en-US/siemens-catapult-ai-nn/

Al on ASIC

34

PRESS RELEASE

Siemens simplifies development of Al accelerators for
advanced system-on-chip designs with Catapult Al NN

May 21, 2024
Plano, Texas

Catapult Al NN brings together hls4ml, an open-source package for machine learning hardware
acceleration, and Siemens' Catapult™ HLS software for High-Level Synthesis. Developed in close
collaboration with Fermilab, a U.S. Department of Energy Laboratory, and other leading contributors
to hls4ml, Catapult Al NN addresses the unique requirements of machine learning accelerator design
for power, performance, and area on custom silicon.

* Enables software d pment teams to lessly translate Al models designed in Python into silicon-based
implementations, facilitating faster and more power-efficient execution compared to standard processors

2= Fermilab



Smart Pixels
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https://indico.phy.ornl.gov/event/510/contributions/2206/
https://indico.phy.ornl.gov/event/510/contributions/2260/

Smart Pixels

Floorplan with analog pixels and power a bias grid

’ CHIP TOP '
(CMS_ANA_PIX_DVS_TOP)

ANALOG BIAS J

CMS,PIXEL,BIAS

(

Red: classifier algorithm

ms SUPERPIXELS
|
8x32

TEST STRUCTURES

CMS_TEST_STRUCTURE_TOP

24-bit Shift Register Extension

Pixel meaout
Logic
v3 ’
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Smart Pixels

) spacel
Credit: Adam Quinn

Python Inteface

S
©  Credit: Adam Quinn

7
4Zynq UltraScale+

/ MPSoC ZCU102

/
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Eval Board

Caribou Board
(Open-source
DAQ System)

Custom ASIC
board

Wire bonded ASIC
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Smart Pixels

* Accessing sub-ns time component while meeting power requirements likely requires
novel microelectronics solutions

— Clocked digital CMOS solutions are power hungry
— Consider neuromorphic approaches, e.g. analog or spiking NN

— - - - -
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https://techovedas.com/how-in-memory-computing-could-be-game-changer-in-ai/

AXOLITL m#@}@mir

https://cds.cern.ch/record/2904695

Real data x . _ : _Reconstructed data X

mk

Bottleneck: autoencoder learns to x — X represents degree of
Train on ZeroBias LHC data compress high dimensional inputs abnormality
into low dimensional latent space

2= Fermilab
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AXOLITL

40

(P, @) * [1 PSS + 4 e/y + 4 pu + 10 jets]

input € R57

output € R®

R -
(wlwfw w|mw|wfw|w]

=>Z,l,.2 =» Anomalous or Not

| Latency | LUTs | FFs | DSPs | BRAMs
2 ticks -
AXO TL 50 ns 2.1% 0 0 0
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AXOLITL
IRL

41

L

o

il

S AxouTL

—— MP7 payload

e «—— MP7 infrastructure

—

X1Y1

X1Y0

his 4 ml
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AXOLITL
IRL

CMS Experiment at the LHC, CERN
' Data recorded: 2023-May-24 01:42:17.826112 GMT
’/“_- Run / Event/LS: 367883 / 374187302 / 159

For some signals, up to
factor of 10 increase
in signal efficiency!

payload

infrastructure

ml

Fermilab




B. Du et al, https://indico.cern.ch/event/1387540/contributions/6153407/

ML-based qu bit readout PURDUE % Fermilab @):%+::
ZCU216 w/ QICK Fridge
Read Transmon qubit chip'
g 17 e I B -
:v Drive : = = \
.g‘ B 3+ \“
= [ BrRAM Flux ' i . ‘

{Ln.Q.n} # % A
Cla:::ﬁer 4']— %‘:—i—jﬁl
e

QICK T e < <]

’ Control hardware Quantum processor

Zynq RFSoC
Readout frequencies in the RF, ~few GHz
Control latency < 1 ps
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ML-based qubit readout

43

Readout Signal - ADC unit
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ML-based qubit readout

43

Readout Signal - ADC unit
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ML-based qubit readout

< 40 ns latency and
< 6% of FPGA resources

Configure Load Compute Store
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ML-based qubit readout

44

< 40 ns latency and
< 6% of FPGA resources

Load Compute Store
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Outline

* Fast and Slow

* Fast ML and hardware codesign
* Fast and Slow ML together
* Slow ML & Real-Time

45
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Adaptive systems

Sensor data

& SS40-50 E _ ;v i
: e ) )
Instrument, | . o (ML) h
- minutes : .
A ===
: \- J [
E Fast controller inference . Learned controller A —
Actuators/
Decisions
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Adaptive systems

Extraction Line $520-30
PR e
»“P X
-

X ««r-—,‘%
Trecwostate | Y. OB bump
septa %

Summit on Digital Twins last Tuesday
https://indico.fnal.gov/event/66849/

Learned surrogate that
Sensor data adapts in real-time

46
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Cart-pole: canonical reinforcement learning
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Cart-pole: canonical reinforcement learning
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Cart-pole IRL

48
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Cart-pole IRL
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Cart-pole IRL
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Demol

B8
#ld

Credit: Marcin Paluch (ETH Zurich)
& Ben Hawks (FNAL), Dennis Plotnikov (SULI, JHU)
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Thoughts on adaptive systems

* Real-time feedback often deal with raw data - only one crack at the datal
* The performance of the twin and the control agent are interconnected
* What are the right time scales?

* A robust, adaptive ML control agent impacts system performance and timescales

*/‘7‘““ < Learned surrogate that
=== \ L Sensor data adapts in real-time
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\ / N T
o ]
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Control
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Instrument,
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' Fast controller inference Learned controller :
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Actuators/
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Learning = optimization

learning as optimization

Weight
Parameter

to learn the weights, we need the derivative of the loss w.r.t. the weight
i.e. "how should the weight be updated to decrease the loss?”

, oL
W=wW— =

Ow

2= Fermilab
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Robustness, a priori

* Goal - frain a model to be more robust to model perturbations - more generalizable
— Input perturbations = noise and lost channels
— Weight perturbations = bit flips due to radiation

2= Fermilab
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Robustness, a priori

* Goal - frain a model to be more robust to model perturbations - more generalizable
— Input perturbations = noise and lost channels
— Weight perturbations = bit flips due to radiation

| | Globally poorly-connected | Globally well-connected
Phase I Phase 11

o+, high barrier

Locally sharp low-energy path

Phase III Phase IV-A | Phase IV-B

...enn, Nigh barrier

trained models are
less similar

trained models
are similar

Locally flat
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Metrics

Mode connectivity: barriers between converged models

< >
A | | Globally poorly-connected Globally well-connected
Phase I Phase II
oo, high barrier
Locally sharp : k low-energy path
--------- [ )
Phase III Phase IV-A | Phase IV-B
.eexn, high barrier _
Locally flat ; . trained models are trained models
less similar are similar
........... (L)
\/
< >
Hessian Trace: S o :
essia ace CKA similarity: similarity across trained models

Local smoothness
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Learning = optimization

learning as optimization

Weight
Parameter

* Add additional loss tferms to improve robustness and generalizability

2
Al (@) 7 NWIW —I||F
Jacobian regularization penalizes large Lipschitz regularization encourages
output impacts due to input perturbations weight orthogonality for loss landscape
smoothness

2= Fermilab
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ASIC autoencoder

55
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ASIC autoencoder

65 nm LP CMOS
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ASIC autoencoder

55

Powerful, Flexible, Adaptable Data Compression

Inputs

48TC@7b =

336 bits/BX Conv2D-NN

ECON Encoder

Flatten

Dense

Outputs

48 bits/BX

16-dim latent
space
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Robustness

Credit: T. Baldi (Santa Anna Pisa, FNAL internship), J. Campos (FNAL), et al

Loss line with different Regularizers
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Robustness

Performance on perturbed data with gaussian noise (10%)

regularizer
—— Baseline
2.0 —®— Jacobian (A=0.1)

1.4 1

1.2 A

—8— Orthogonality (A=0.00001)

4 6 8 10
precision

Lipschitz regularization seems quite promising as a way make more robust edge NNs
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Performance on perturbed data with salt_pepper noise (10%)

regularizer
—8— Baseline
—®— Jacobian (A=0.1)
—8— Orthogonality (A=0.00001)

W

4 6 8 10 12
precision

Feeds into the automation loop and provides more system stability
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Outline

58

Fast and Slow

Fast ML and hardware codesign
Fast and Slow ML together
Slow ML & Real-Time
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Life cycle

Projectization/

of instruments, detectors, facilities

Construction

A

Integrated Design of Next-
Generation Instruments and
Detectors

Analysis and

’

Ultra-efficient Sensing and
Inference for Time-Critical
Processes

Adaptive optimization and
control for complex systems
and facilities

Reduce operational load and
preserve exepertise through
Information Synthesis connecting
experiments and collaborations

A

Scientific Outputs

59
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Life cycle

Projectization/

of instruments, detectors, facilities
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Life cycle of instruments, detectors, facilities
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How much energy does a muon lose in 5m of iron?

Thought for 10 seconds v
To determine how much energy a muon loses while traversing 5 meters of iron, we need to
calculate the energy loss per unit distance and then multiply it by the total distance traveled.

Step 1: Understanding Muon Energy Loss Mechanisms

Muons, like other charged particles, lose energy in matter primarily through:

« lonization and Excitation: Interacting with electrons in the material, causing ionization or
excitation.

« Radiative Processes: At higher energies, processes like bremsstrahlung, pair production, and

photonuclear interactions become significant.

For this calculation, we'll focus on ionization energy loss, which is dominant for muon energies up
to several hundred GeV.

Step 2: Using the Bethe-Bloch Formula

The Bethe-Bloch formula describes the mean energy loss per unit path length (‘j—f) of charged
particles as they pass through matter. For muons in iron, the mass stopping power (mean energy
loss per unit mass thickness) is approximately:

dE 2
(E)mm ~ 1.5MeV - cm®/g

n.b. GPT-Y%o got
this wrong
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Step 3: Calculating Energy Loss Per Unit Length

First, we need to convert the mass stopping power to energy loss per unit length using the density

of iron:

« Density of Iron (p): Approximately 7.874 g/ cm®
Now, calculate the energy loss per centimeter:
dE dE
<—) = (—) x p=15MeV -cm?/g x 7.874g/cm’ = 11.811 MeV /cm
dz length dz mass

Step 4: Calculating Total Energy Loss Over 5 Meters

Convert 5 meters to centimeters:

5 meters = 500 cm

Now, multiply the energy loss per centimeter by the total distance:

dE
AE = (d_) x Distance = 11.811 MeV/ecm x 500 cm = 5905.5 MeV
o length

Step 5: Converting to GeV

Since 1 GeV = 1000 MeV:

~ 5905.5 MeV

AFE = 1000 = 5.9055 GeV

Answer:

Approximately 5.9 GeV of energy is lost by the muon while traversing 5 meters of iron.
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|__Person1 R
P Hi, I'm wondering if anyone know how to check the generator versions of the UL samples?
imag

CA: L6S Please fix 2.4.2 beyond the layout. Are you sure the QCD is produced
with this MG version? | remember most UL samples were regenerated with MG
2.6.X. Which scheme (4FS or 5FS)? Which jet merging (MLM or FXFX)? Please
provide

CA: L67 Please also include the version of MG and fix words beyond the layout.
CA: L73 Also the version of MG here and everywhere.

CA: L75 EW seems jargon and nol easy to recognize for readers

CA: L82, L84 Add versions of each generator used in your signals,

told me the answer to this at some point

| think it is actually two different versions

P | looked into it and it's madgraph/madgraph MLM
I’'m not really sure how to write this up
in the paper

| _Person1 _ EEU

) Do you happen to know the madgraph versions for the UL QCD samples!!

'i 2.6.1and 2.6.5
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https://indico.cern.ch/event/1395528/contributions/5877957/attachments/2833825/4951736/chATLAS%20IML%20Meeting%20(1).pdf

chATLAS

An Al Assistant for the
ATLAS Collaboration

LLM + BAG (Retrieval-Augmented

Generation):
Goal: Ask questions to an LLM about

private information without retraining

ng?};*,

question + W‘te
: Expl ot source-
Smort Retnever
&mtor DS
D relevart
Q lookeup documerts

Spee& K ncu[gd?e Base
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https://indico.cern.ch/event/1395528/contributions/5877957/attachments/2833825/4951736/chATLAS%20IML%20Meeting%20(1).pdf

chATLAS

An Al Assistant for the Cz_@——» - ‘! =

Explic?t source-

ATLAS Collaboration S — o i ooif e

Q look-up [B e

LLM + RAG (R

Generuﬁon): How do | calculate the z0 of a track with respect to a vertex?

Goal: Ask quest

private informa , , : :
You can calculate the z0 of a track with respect to a vertex by using the following code snippet:

XAOD::TrackParticle trk;
XAOD::Vertex vtx;
float delta_z0 = fabs(trk.z0() + trk.vz() - vtx->z());

where trk.vz() represents the point of reference for the z0 calculation (in this case, the beamspot position along the z axis).
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https://indico.cern.ch/event/1395528/contributions/5877957/attachments/2833825/4951736/chATLAS%20IML%20Meeting%20(1).pdf

chATLAS

An Al Assistant for the
ATLAS Collaboration

LLM + RAG (R
Generation):

How do | calculate the z0 of a track witl

Expanding footprint: + more TWikis +CDS

Significant expansion of collected dataset:
e Expand initial scrape of TWikis. Expand from 1.5k to ~22k

e Add 1.2k ATLAS published papers from CDS RL
META’s Neural Optical Understanding for Academic Documents (NOUGAT)

converts PDFs to markdown preserving math symbols and formulae

DB with CDS docs in alpha testing m

o

Room to grow. Some low hanging fruit:
TWikis: Do not include software docs (yet)
e CDS: +66k records, 36k internal. Room to (easily) grow

Latest scrapers are here

Goal: Ask quest

ATLAS

IML Meeting, 9th April 2024

privq‘l‘e informu DB  Twiki Software E-group Indico PDF Plots
Docs Archive Meetings
Task
i) Chunk &
Embed
imspot position along the z axis).

In Progress e .
Complete 2E Fermllab
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In closing...
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Summary

* Fast and Slow

— Resolving 18 orders of magnitude in time (!) to understand where Al could be
deployed to improve sensing, automation, control, and knowledge synthesis

* Fast ML and hardware codesign

— Embedded ML can be used to access new information, reduce biases, and develop
adaptive systems; accessible tools like histml speed up algorithm/hardware design

* Fast and Slow ML together

— More powerful autonomous instruments enabled through digital fwins - physically-
coupled fast simulators - and more robust real-fime controllers

 Slow ML & Real-Time

— LLMs + RAG and emerging agentic workflows can aid in reducing operational load
by preserving and synthesizing collective expertise

2= Fermilab
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Ruminations

“Real-time” is a curious term

time, its illusiveness across multiple timescales in
particle physics with a message of hope - Imagen3

* Humans are not particularly good at pattern
recognition over multiple tfimescales - this also
requires us to capture the right data

* Al is a disruptive technology - I'm hopeful that we
can harness it to accelerate our particle physics
ambitions

* There are many connections fo other scientific
domains enabling discovery in many (sub-)fields
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