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• October: 2024 Fast ML for Science Conference 

– https://indico.cern.ch/e/fastml2024  

• November: DOE Office of Science AI Roundtable on Experiments and Facilities 

– Including biology, environmental, material, fusion sciences, HEP and nuclear physics 

• November: DOE-wide discussions on the role of supercomputing and AI 

– FASST initiative: Frontiers in AI for Science, Security and Technology

An interesting time, personally 
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Huge credit to many folks and stimulating discussions! 

https://indico.cern.ch/e/fastml2024


• ❌  AI for physics analysis including theory, simulation, reconstruction, and 
interpretation - let’s just assume physics + AI is awesome :) 

• ✅  AI as it applies to detectors and instruments* to: 

– Accelerate new physics discoveries  

• Unearth new physics signatures much more quickly  

• Operate instruments and detectors much more efficiently 

– Enabling faster analysis  

– Requiring less data needed to get to the same results 

– Reducing operational resources and increasing long term reliability 

What is in this talk and what is not

3 * nearly everything I will say applies to particle accelerators too



• Fast and Slow 

• Fast ML and hardware codesign 

• Fast and Slow ML together 

• Slow ML & Real-Time

Outline
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1 channel ~ 10b 
1 channel, 1 MHz rate ~ 10 Mb/s 
100k channels, 1 MHz rate ~ 1 Tb/s
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Too Much Data 
Too Late1 channel ~ 10b 

1 channel, 1 MHz rate ~ 10 Mb/s 
100k channels, 1 MHz rate ~ 1 Tb/s
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Too Much Data 
Too Late

Embed more intelligence



Fast ML for science and the extreme edge
“Scientific discoveries come from groundbreaking ideas and the capability to 
validate those ideas by testing nature at new scales - finer and more precise 
temporal and spatial resolution. This is leading to an explosion of data that 
must be interpreted, and ML is proving a powerful approach. The more 
efficiently we can test our hypotheses, the faster we can achieve discovery. 
To fully unleash the power of ML and accelerate discoveries, it is necessary 
to embed it into our scientific process, into our instruments and detectors.”
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Applications and Techniques for Fast Machine Learning in Science 
https://doi.org/10.3389/fdata.2022.787421



Universal function approximation - fit with customizable objective: 
f(inputs; lots of parameters) = output 

• Expressive & powerful: able to find patterns and correlations in high-dimensional data 
not explicitly accounted for; can unlock large gains in performance 

• Adaptive & flexible: able to adapt to new data, conditions; handles all different types of 
data representations

Why AI? 
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Fast ML for Science
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The Fast ML for Science community aims 
to bring seemingly different domains 

together to develop techniques, tools, and 
platforms for challenges that far outpace 

industry. 
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• Fast control 
– Immediate response to dynamics of 

the experiment and data readout 

– Event timing, triggering, etc. 

• Slow control 
– Detector stability over minutes, 

days, weeks, months,… 

– Monitoring and controlling 
operational parameters:  electronics 
gains, pedestals, calibrations, etc. 

Fast and slow control
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Image credit: A. Thea
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…on reducing biases in 
our “fast" decision-
making selves



Life cycle of instruments, detectors, facilities 

13
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~109seconds



Life cycle of instruments, detectors, facilities 
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~109seconds

107 109

My memory…

Feedback latency [s]
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Fast ML example applications
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Pixel information in the trigger brings 
fundamentally new capabilities to LHC 
experiments - but rates are massive! 
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Fast ML example applications
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�1

Dense Network 
23 ➜ 30 ➜ 25 ➜ 20  

➜ momentum & classifier

Inference time: 280 ns 
Throughput: 104 Gb/s

AI circuit for ultrafast inference on FPGA

How can we 
reduce biases in 

trigger selections? 



Fast ML science applications
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Dynamic and noisy systems with multiple 
timescales for changing conditions…

QICK

https://github.com/openquantumhardware/qick


Moving data expensive, computing cheap
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Efficient machine learning

20



• Computation parallelization/vectorization 
and in-memory compute (architecture) 

• Quantization, reduced precision 

– For ML, 32-bit floating point is often 
overkill 

– Integer/fixed-point math at 
16,8,7,6,5…1 bits 

• Compression, pruning  

– maintain the same performance while 
removing low weight synapses and 
neurons
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Hardware - algorithm codesign

21

QKeras (Google) 
Brevitas (AMD) 

HAWQ (UC Berkeley) 
QONNX (Microsoft/AMD)

https://pypi.org/project/hls4ml/
>1.3k Github stars, 
~1.2k downloads last month

https://www.nature.com/articles/s42256-021-00356-5
https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/1905.03696
https://arxiv.org/abs/2206.07527
https://pypi.org/project/hls4ml/
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Physics requirements

Data representation 
→ ML architecture Neural architecture search/ 

Hyperparameter optimization

Latency?  
Pipeline Interval?

Resources? Area/power? 
Radiation? Cryo?

Quantize network

Intermediate (quantized)  
representations

Pruning/sparsity?

Microarchitecture

Parallelization
Synthesize, validate design,  
satisfy design rules/timing

Multi-objective 
design space optimization
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• Build a surrogate model of hls4ml to predict resources without 
running costly synthesis steps 

• First dataset of its kind 

– > 100k models on NRP 

– Simple to start: MLPs 

• Build a graph NN which predicts network FPGA resources 

– Each layer of the network is a layer in the graph 

– In distribution accuracy 
is ~few % 

wa-hls4ml & luiGNN

32

Hawks, Plotnikov et al 
https://indico.cern.ch/event/1387540/contributions/6153600/ 
https://indico.cern.ch/event/1387540/contributions/6153564/

https://indico.cern.ch/event/1387540/contributions/6153600/
https://indico.cern.ch/event/1387540/contributions/6153564/
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Fast ML example applications
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AI on ASIC
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https://newsroom.sw.siemens.com/en-US/siemens-catapult-ai-nn/



Smart Pixels
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Including time slices

https://fastmachinelearning.org/smart-pixels/

See recent talks by C. Mills and D. Shekar at CPAD this week 
https://indico.phy.ornl.gov/event/510/contributions/2206/  
https://indico.phy.ornl.gov/event/510/contributions/2260/ 

https://indico.phy.ornl.gov/event/510/contributions/2206/
https://indico.phy.ornl.gov/event/510/contributions/2260/


Smart Pixels
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White: network weights

Red: classifier algorithm

Floorplan with analog pixels and power a bias grid

Superpixel_v2 
8x32

Superpixel_v1 
8x32

DVS 
FE

Pixel 
v3



Custom ASIC 
board

Wire bonded ASIC
Credit: Adam Quinn 

Credit: Adam Quinn 

Smart Pixels
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• Accessing sub-ns time component while meeting power requirements likely requires 
novel microelectronics solutions  

– Clocked digital CMOS solutions are power hungry  

– Consider neuromorphic approaches, e.g. analog or spiking NN

Smart Pixels

38 Link on analog compute; arXiv:2307.11242

https://techovedas.com/how-in-memory-computing-could-be-game-changer-in-ai/


AXOL1TL
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https://cds.cern.ch/record/2904695



AXOL1TL
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AXOL1TL 
IRL
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AXOL1TL 
IRL
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For some signals, up to 
factor of 10 increase 
in signal efficiency!



ML-based qubit readout 
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Readout frequencies in the RF, ~few GHz 
Control latency < 1 µs 

B. Du et al, https://indico.cern.ch/event/1387540/contributions/6153407/



ML-based qubit readout 
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ML-based qubit readout 
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Ternary, 2-bit model



ML-based qubit readout 
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< 40 ns latency and  
< 6% of FPGA resources



ML-based qubit readout 
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Proof-of-concept end-to-end 
workflow established, extendable 

to multi-qubit systems and 
adaptive automated operation 

< 40 ns latency and  
< 6% of FPGA resources
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Adaptive systems
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Instrument, 
detector,  

accelerator 

(ML) 
Control 
Agent

nanoseconds -  
milliseconds

Sensor data

Digital 
Twin

Δminutes 
- weeks

Actuators/
Decisions

Learned surrogate that 
adapts in real-time

Learned controllerFast controller inference

Summit on Digital Twins last Tuesday 
https://indico.fnal.gov/event/66849/



Cart-pole: canonical reinforcement learning 
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Cart-pole IRL
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Digital Twin

Learned Controller



Cart-pole IRL
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Digital Twin

Learned Controller



Cart-pole IRL
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Digital Twin

Learned Controller

Fast Control



Demo!  
🍀🧧🤞
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Credit: Marcin Paluch (ETH Zurich) 
& Ben Hawks (FNAL), Dennis Plotnikov (SULI, JHU)



• Real-time feedback often deal with raw data - only one crack at the data!  

• The performance of the twin and the control agent are interconnected  

• What are the right time scales?   

• A robust, adaptive ML control agent impacts system performance and timescales

Thoughts on adaptive systems

50
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learning as optimization

Loss

Weight 
Parameter

to learn the weights, we need the derivative of the loss w.r.t. the weight
i.e. “how should the weight be updated to decrease the loss?”

w = w � ↵
@L
@w

with multiple weights, we need the gradient of the loss w.r.t. the weights

w = w � ↵rwL

Learning = optimization

51

‘

‘



• Goal - train a model to be more robust to model perturbations - more generalizable 

– Input perturbations = noise and lost channels 

– Weight perturbations = bit flips due to radiation

Robustness, a priori
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Metrics

53

Mode connectivity: barriers between converged models

CKA similarity: similarity across trained modelsHessian Trace:  
Local smoothness
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‘

‘

Jacobian regularization penalizes large 
output impacts due to input perturbations 

Lipschitz regularization encourages 
weight orthogonality for loss landscape 

smoothness

• Add additional loss terms to improve robustness and generalizability



ASIC autoencoder
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ASIC autoencoder
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65 nm LP CMOS



ASIC autoencoder
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65 nm LP CMOS

Powerful, Flexible, Adaptable Data Compression



Robustness
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CKA similarity

Hessian Trace

Credit: T. Baldi (Santa Anna Pisa, FNAL internship), J. Campos (FNAL), et al 



Robustness
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Lipschitz regularization seems quite promising as a way make more robust edge NNs 
Feeds into the automation loop and provides more system stability

Better
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107 109

My memory…

Feedback latency [s]



o1
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n.b. GPT-4o got 
this wrong 



o1
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Yesterday

62

Person 1

Person 1

Person 1

Person 3

Person 2

Person 3

Person 3
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https://indico.cern.ch/event/1395528/contributions/5877957/attachments/2833825/4951736/chATLAS%20IML%20Meeting%20(1).pdf

LLM + RAG (Retrieval-Augmented 
Generation): 
Goal: Ask questions to an LLM about 
private information without retraining
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In closing…
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• Fast and Slow 
– Resolving 18 orders of magnitude in time (!) to understand where AI could be 

deployed to improve sensing, automation, control, and knowledge synthesis 

• Fast ML and hardware codesign 
– Embedded ML can be used to access new information, reduce biases, and develop 

adaptive systems; accessible tools like hls4ml speed up algorithm/hardware design 

• Fast and Slow ML together 
– More powerful autonomous instruments enabled through digital twins - physically-

coupled fast simulators - and more robust real-time controllers  

• Slow ML & Real-Time 
– LLMs + RAG and emerging agentic workflows can aid in reducing operational load 

by preserving and synthesizing collective expertise 

Summary

65



• “Real-time” is a curious term  

• Humans are not particularly good at pattern 
recognition over multiple timescales - this also 
requires us to capture the right data 

• AI is a disruptive technology - I’m hopeful that we 
can harness it to accelerate our particle physics 
ambitions  

• There are many connections to other scientific 
domains enabling discovery in many (sub-)fields

Ruminations
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time, its illusiveness across multiple timescales in 
particle physics with a message of hope - Imagen3


