EXCELLENCE IN DETECTOR AND INSTRUMENTATION TECHNOLOGIES (EDIT)

SUPERCONDUCTING DETECTORS

CLARENCE CHANG Argonne National Lab

Nov 11, 2024

SUPERCONDUCTIVITY

Common perceptions

SUPERCONDUCTING SENSORS

- There are applications that require/benefit from low temperatures
 - Sensing applications where signal thresholds are <1eV (gap of Si)
 - Amplification of low freq EM signals
 - Calorimetric/bolometric applications where noise from thermal fluctuations need to be minimized
- Superconductivity corresponds to phase transition that takes place at these temperatures and energy scales
 - Rich set of phenomena
 - Can develop/build many kinds of devices
 - Integrate to realize complex detectors

TOPICS/OUTLINE

TES

- Principles
- Applications
- MKID
 - Principles
 - Applications
- SQUIDs/Josephson Junctions
 - Principles
 - Applicatoins

- SNSPD
 - Principles
- Fabrication
- Cooling

SUPERCONDUCTORS HAVE A RESISTIVE TRANSITION

 Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

0.9 **MODERN TES** 0.8 Resistance)[Ω]) δR TES% P_{signal}% 0.3 Τ+δΤ% δΤ 0.2 0.54 0.56 0.58 0.62 0.52 0.6 Heat%apacity% Temperature)[K]) Weak%hermal%ink,% $\delta P_{Joule} = \frac{d}{dT} \left(\frac{V_0^2}{R(T)} \right) =$ G^{al}% $\left(rac{V_0}{R} ight)^2 rac{dR}{dT} \delta T$ Heat%Sink%~240%nK)%

0.64

OPERATING PRINCIPLES

- Device stabilizes at T_c. Temperature is nearly constant.
- Linearity:

$$-\Delta \mathsf{P}_{\text{absorbed}} \approx \Delta \mathsf{P}_{\text{bias}} = \mathsf{V}_{\text{bias}} \times \Delta \mathsf{I}_{\text{TES}}$$

- Increased bandwidth
- Voltage bias using shunt resistor
 - Measure current using high sensitivity SQUID
- Fundamental noise comes from thermal fluctuations (~kT), which can be made small by choosing suitable T_c.

PARTICLE INTERACTIONS IN MASSIVE TARGETS

Recoil energy from particles (dark matter, neutrinos) interacting w/ target

- ns: Initial recoil
- **µs**: athermal excitations
 - Collective excitations: Phonons, rotons, magnons
 - · Ionization, scintillation
 - Photon emission
- ms: thermalization

✦Recoil spectrum for low mass DM and CEvNS rising exponentially at lower energy

Pushes for lower thresholds

LARGE MASS BOLOMETERS FOR CEVNS Ricochet (Q-Array)

Argonne 🗲

RICOCHET (Q-ARRAY)

Large mass bolometer

ATHERMAL SIGNALS E.g. from PMTs...

- Will these detectors have the same energy sensitivity?
- Yes, if:
 - Lifetime of the athermal excitation (photon) is really long
 - Excitation absorption dominated by sensor

ATHERMAL PHONON SENSOR TECHNOLOGY

DARK MATTER SuperCDMS

- Athermal phonon sensing
 - Ideally, sensor noise determined by (small) thermal TES
 - Target volume determined by crystal size
 - Timing of athermal signal provides add'l information for discriminating events

PHOTON DETECTORS FOR CMB

Antennas and filters

- Photons follow Bose-Einstein statistics
- Mean occupation number (average number of photons)

$$< n >= \frac{1}{e^{h\nu/kT} - 1}$$

Variance $< n^2 >= n(n+1)$

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

COOPER PAIRS

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

KINETIC INDUCTANCE

- Pairing of electrons into Cooper pairs
 - Energy gap between ground state and next excited state
- Quasiparticles are Cooper pair "excitations"
 - Fermions vs bosons
 - "Broken" Cooper pairs
- Cooper pairs have mass and momentum
 - Do not scatter. Charge flow (current) has no dissipation (real(Z) = 0)
 - Inertial response to changes in E-field. Charge flow lags field $(imag(Z) \neq 0)$

SURFACE IMPEDANCE

- Imagine superconductor as a fluid with two particles (Cooper pairs and quasiparticles)
- Complex conductivity depends on contributions from both
 - Cooper pairs:
 - No dissipation. Kinetic inductance.
 - Quasiparticles:
 - Dissipate
 - Small kinetic inductance
- Total complex conductivity depends on the population of pairs vs qps
 - Breaking pairs lead to a change in the complex impedance

KINETIC INDUCTANCE DETECTORS

Measure Lk, Rs shift using LC resonator

- Two methods: distributed, lumped element
- Resonator complex transfer function → phase + amplitude, frequency + Q

NATURALLY MULTIPLEXED

- LC resonator has specific F0
- Multiple resonators on a single line (just design w/ different f0s)
 - Readout w/ RF electronics
- Should be able to achieve few 10³ / octave

LINE INTENSITY MAPPING Like CMB, only spectroscopic

- Measure aggregate emission from lots of galaxies
 - Don't resolve individual galaxies
 - Only measure overall distribution
- Emission dominated by a few lines
 - Detected wavelength is redshifted
- 3D distribution of galaxies
 - Low angular resolution (2D map)
 - Low spectral resolution (redshift)

TECHNICAL CHALLENGE Requires increasing channel density

 "Spectroscopy" requires >100X over current densities typical for CMB experiment

SPECTROMETER ARRAYS

Argonne 🛆

MACROSCOPIC COHERENT QUANTUM STATE

 Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

COHERENT QUANTUM STATE

"Macroscopic," can access phenomena with "reasonable" size devices

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

FLUX-VOLTAGE TRANSDUCER

TES ammeter

WENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

AMORE Neutrinoless Double Beta Decay search

(b)

$$I_J = I_0 \sin \delta$$
$$V = \frac{\Phi_0}{2\pi} \frac{d\delta}{dt},$$

 $\frac{dI_J}{dt} = I_0 \cos \delta \, \frac{2\pi}{\Phi_0} V.$

 $L_J = \frac{\Phi_0}{2\pi I_0 \cos \delta}.$

PARAMETRIC AMPLIFICATION

Harmonic oscillator whose physical properties (parameters) vary with time

$$rac{d^2x}{dt^2}+eta(t)rac{dx}{dt}+\omega^2(t)x=0$$

- Nonlinear inductance provides this parametric property for an electric circuit

 Can pump the oscillator by varying β, ω such that the oscillator phase locks to the pump and absorbs energy

QUBITS

NEW TECHNOLOGIES

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

SUPERCONDUCTING "NANO"-WIRE SINGLE PHOTON DETECTOR

SUPERCONDUCTING "NANO"-WIRE SINGLE PHOTON DETECTOR

- Very high detection efficiency
- Negligible dark counts
- Fast timing
- Developing arrays

MICRO/NANO-FABRICATION THIN-FILM PROCESSING

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

THIN FILM PROCESSING

- Layers are nearly 2D sheets
 - Lateral feature sizes are ~2 um –
 200 ums wide and long
 - Thickness is 10s-100s nm thick
- Materials only approximated by basic condensed matter principles
 - Many materials have multiple crystalline structures
 - Thin films are not crystalline, but are granular
 - Material composition is not infinitely pure

Argonne National Laboratory is a U.S. Department of Energy Jaboratory managed by UChicago Argonne, LLC.

FABRICATION PROCESSES

- Adding material: deposition
- Removing material: etching/lift-off
- Patterning material: lithography

FABRICATION PROCESSES

- Adding material: deposition
- Removing material: etching/lift-off

Patterning material: lithography

PHYSICAL VAPOR DEPOSITION (PVD) -EVAPORATION

- Heat target material to high temperature.
- Material in the (hot) vapor moves to target and condenses to form thin film.
- Not all materials readily evaporated. Need to get things sufficiently hot.
- Material transport is directional, challenging for uniform deposition over a large surface (needs large target, or large transport distance)
- Condensed material is "sticky," leading to non-conformal films (good for lift-off, bad for step coverage)

PHYSICAL VAPOR DEPOSITION (PVD) -EVAPORATION

resistance heating: limited to ~1800C. Can also heat crucible leading to contamination e-beam: heat W filament, capture electrons with Bfield and direct beam into target. Can achieve temperatures ~3000C.

PVD - SPUTTERING

- Apply voltage across noble gas (typically Ar)
- Electrons accelerated by E-field

NERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

- At large enough voltages, scattering off Ar atoms can ionize strip outer electron. Secondary electron accelerated, process repeats
- Ar ions accelerated into target by E-field. At large voltages, KE of Ar ion can knock target atoms out of target.
- Free target atoms transported to substrate to form film

PVD - SPUTTERING

- Most materials can be sputtered.
- Atoms have high mobility leading to more conformal films (good for step coverage, bad for lift-off)
- Iarge targets -> more uniform
- Plasma ionization is inefficient (<0.01%). Presence of a lot of Ar gas limits sputtering deposition rate as target atoms scatter off the gas.

PVD – MAGNETRON SPUTTERING

 Magnetron sputtering uses magnetic fields to confine electrons near target. Increases ionization efficiency. Can sputter with low gas concentrations and higher rates.

FABRICATION PROCESSES

Adding material: deposition

Removing material: etching/lift-off

Patterning material: lithography

ETCHING - CHEMICAL

- etchant reacts with materials to form byproducts that are readily removed
- immerse wafer in etchant (liquid, gaseous)
- isotropic: process driven by diffusion, etchant removes material in all directions.
- selective: not all materials undergo same chemistry with etchant. Rate of etching varies by material. Some materials may never be etched.

ETCHING - MECHANICAL

- bombard wafer with high KE ions.
- Ions collide with wafer material, sufficiently high KE will knock material off the wafer. (sputtering!)
- an-isotropic: process driven by field, ion transport is directional
- non-selective: very little dependence on substrate material. Good for removing inert material.
- Good at transferring mask pattern (very little undercut), but slow.

ETCHING – REACTIVE ION ETCH (RIE)

- Combination chemical / mechanical etch
 - inject a reactive gas (etchant)
 - apply voltage to produce a plasma, ionizing atoms in the gas. Gas ions are chemically active (radicals)
 - bombard wafer with radicals.

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

- sputtering and chemical reactions take place
- Inductively Coupled Plasma (ICP) enables separate tuning of plasma concentration and kinetic energy.
- Better control of lateral etching than wet etching
- Etch chemistry can impact sidewall slope, etch selectivity, and cleanliness of etch

FABRICATION PROCESSES

- Adding material: deposition
- Removing material: etching/lift-off

Patterning material: lithography

PHOTOLITHOGRAPHY – PROCESS FLOW

Transfer device designs onto wafer via photo sensitive polymers

Step 1: Coat wafer with photoresist – light sensitive material

Step 2: Expose resist with UV light*. Light causes polymers in resist to break apart

Step 3: Develop photoresist

Step 4: Dry wafer with finished pattern

* Smallest resolution set by wavelength of light source and numerical aperture of imaging system

PHOTOLITHOGRAPHY – MASK DESIGNS

- Mask designs are created in CAD software
- Most common file type is '.gds' file

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UCbicago Argonne U.C.

- Key functionality is 'cell' like a unit cell in a crystal
- Basic cells are referenced in higher level cells to create complex designs
- CAD files are used to create a photomask or reticule (i.e. stencil)
- Photomask is made once (often by e-beam writer), used repeatedly

PHOTOLITHOGRAPHY – STEPPER

- Exposes a small portion of the wafer, then 'steps' and repeats
- High throughput photolithography
 - Process tens to hundreds of wafers per hour
- Automatically aligns mask to layers on the wafer (to within ~100 nm)
- Need a mask for each pattern
- Limited field of view

PHOTOLITHOGRAPHY – MLA

- Uses a laser diode to expose the resist
- Raster the laser over the wafer line by line
- No mask needed just gds file
 Great for rapid R&D
- Field of view extends to the entire wafer
- Low throughput
 - 3 min process on stepper can take over an hour

PUTTING THINGS TOGETHER

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

DEP/LITH/ETCH

Step 1: Deposit material

Step 2: Photolithography

Step 3: Etch

deposited material

LIFT-OFF

Fencing– material deposited on sidewalls is left behind

Nearly 'perfect' fencing around edges of liftoff pattern

THIN FILM PATTERNING

Often see reduced fencing using two layer resist

Can also use ultrasonic agitation to try to 'break' off fencing

COOLING THINGS DOWN

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

CRYOGENICS

CRYOGEN FREE

BILE DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

ADIABATIC DEMAGNETIZATION

Argonne

DILUTION REFRIGERATOR He3/He4 mixture

- Mass difference between He3 and He4 gives a slight preference for He3 to be dissolved in He4
- At sufficiently low temperatures, solubility <100%
- Even at 0K, solubility ~6%
- Below a certain temperature, mixtures separates into two phases
 - He3 rich
 - He3 poor (but still has He3)

DILUTION REFRIGERATOR

Pumping He3 through He4

- Two chambers: Mixing chamber (MXC) and Still
 - Connect through a small pipe
 - fed near bottom of MXC, below phase separation
- Still heated to higher temperature
 - Evaporates He3 from the liquid in the Still
- Osmotic pressure drives He3 from MXC into Still
- In MXC, He3 "evaporates" from rich phase into dilute phase

