

Calorimetry

Grace E. Cummings

With a lot of influence from Richard Wigman's HCSS 2018 Talk!

EDIT School - November 15, 2024

What is calorimetry?

Energy Measurement

‡ Fermilab

What is calorimetry?

Energy Measurement

Every particle detection technology can be used for calorimetry!

Fermilab

Energy Measurement

How to build a detector to **specifically** measure energy

Fermilab

What energy regime are we trying to measure?

Energy Measurement

How to build a detector to **specifically** measure energy

Fermilab

What energy regime are we trying to measure?

Cryogenic detectors/quantum sensors

- Phonon detection
 - Cooper-pair dissociation
 - Etc...
 - For more info
 - See <u>Monday's talk!</u>
 - See <u>Thursday's talk!</u>

How to build a detector to **specifically** measure energy

Energy Measurement

‡Fermilab

Grace Cummings | EDIT School, 15 November 2024

🛟 Fermilab

Grace Cummings | EDIT School, 15 November 2024

🛟 Fermilab

‡ Fermilab

Grace Cummings | EDIT School, 15 November 2024

Fermilab

Role of calorimetry/calorimeters - see everything

Journal of Physics: Conf. Series 928 (2017) 012001

- Measure charged and neutral particles
 - Give enough space for this interaction
 - Allows for "missing energy" reconstruction
- Particle Flow and Particle ID
 - Either alone or w/ other subdetector info, can ID particles
- Good for *trigger*
 - Quick, large analog signal

‡ Fermilab

Role of calorimetry/calorimeters - see everything

Journal of Physics: Conf. Series 928 (2017) 012001

- Measure charged and neutral particles
 - Give enough space for this interaction
 - Allows for "missing energy" reconstruction
- Particle Flow and Particle ID
 - Either alone or w/ other subdetector info, can ID particles
- Good for *trigger*
 - Quick, large analog signal

Not all calorimeters do everything - so you have to think about what you want!

‡ Fermilab

Outline

- 1. What is calorimetry
 - a. How particles deposit energy
 - b. General designs
 - c. Some limitations
- 2. Calorimeter Technologies
 - a. Ionization Calorimetry
 - b. Optical Calorimetry
- 3. What I have left out, but you should be aware of

Compact Muon Solenoid Hadron Calorimeter Upgrade/ High Granularity Calo Upgrade

READOUT ELECTRONICS

Dual Readout for future collider R&D w/ CalVision

Who am I?

🛟 Fermilab

How do particles lose/deposit energy?

Grace Cummings | EDIT School, 15 November 2024

Fermilab

How electrons lose energy

- Bremsstrahlung
 - Photon emitted due to path bending
- Ionization and excitation
 - Liberate or excite electrons in material
 - Can create δ -rays
- Cherenkov Radiation
 - Charged particle moving faster than the speed of light in a media

Electrons actually bend in the electric field of the material's atoms

Brem in material Image credit: https://web2.uwindsor.ca/courses/physics/high_schools/2006/Medical_Imaging/ctphysics.html

‡ Fermilab

How electrons lose energy

• Bremsstrahlung

- Photon emitted due to path bending
- Ionization and excitation
 - Liberate or excite electrons in material
 - Can create δ -rays
- Cherenkov Radiation

🛟 Fermilab

• Charged particle moving faster than the speed of light in a media

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2022 update.

How photons lose energy

- Pair-production
 - Going into electron-positron pairs
 - κ_{nuc} , pp in nuclear field
 - κ_{e} , pp in electron field
- Compton Scattering
 - Photon scatters off an electron in the material
 - *o*_{Compton}
- Photoelectric effect
 - Photon kicks electron into conduction band

■ Ø_{p.e.}

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2022 update

‡ Fermilab

How photons lose energy

- Pair-production
 - Going into **electron-positron** pairs
 - κ_{nuc} , pp in nuclear field
 - κ_{e} , pp in electron field
- Compton Scattering
 - Photon scatters off an electron in the material
 - *o*[™]Compton
- Photoelectric effect
 - Photon kicks electron into conduction band
 - or p.e.

🛟 Fermilab

Electromagnetic showers - particle multiplication

Fermilab

Electromagnetic showers - particle multiplication

Fermilab

Electromagnetic showers - particle multiplication

Grace Cummings | EDIT School, 15 November 2024

Fermilab

How electromagnetic showers *deposit* energy

‡ Fermilab

How electromagnetic showers deposit energy

‡ Fermilab

The units of electromagnetic showers

• Radiation Length

Fermilab

 Distance for which (>> 1 GeV) e± deposit ~63.2% of their energy (1/e)

Their energy (1/e) HOMOGENOUS MATERIAL HOMOGENOUS MATERIAL APPROXIMATION: $X_0 = 716.4 \text{ g cm}^{-2} \frac{A}{Z(Z+1) \ln \frac{287}{\sqrt{Z}}}$ IN A MIXTURE $\frac{1}{X_0} = \sum_i V_i/X_i$ $\widehat{\otimes}$ 10 A = mass number Z = atomic number $N_A =$ Avogadro's number $V_i =$ fractional volume

Roughly material independent way to characterize shower development!

The units of electromagnetic showers

- Radiation Length
 - Distance for which (>> 1 GeV) e± deposit ~63.2% of 0 their energy (1/e)

A = mass numberZ = atomic number $N_{A} =$ Avogadro's number V_{i} = fractional volume

$$(E
ightarrow\infty)=rac{1}{9}rac{1}{N_{
m A}X_0}$$
 \Longrightarrow $9/7~X_0$ Before an interaction

$$0.1 \begin{bmatrix} 10 \text{ GeV initial electron} \\ (calculations) \\ 0.01 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ Depth (X_0) \end{bmatrix}$$

• Lead Iron Aluminium

Fermilab

The units of electromagnetic showers

- Radiation Length
 - Distance for which (>> 1 GeV) e± deposit ~63.2% of their energy (1/e)

Homogenous material approximation:

$$X_0 = 716.4 \text{ g cm}^{-2} \frac{A}{Z(Z+1) \ln \frac{287}{\sqrt{Z}}}$$
IN A MIXTURE

$$\frac{1}{X_0} = \sum_i V_i/X_i$$

• Mean Free path of very high energy photons

$$\sigma(E \to \infty) \ = \ \frac{7}{9} \frac{A}{N_{\rm A} X_0} \quad \Longrightarrow \quad 9/7 \ X_0 \quad \text{Before an interaction}$$

• Molière radius

Fermilab

 \circ ~85-90% of energy deposited in this radius

$$ho_{
m M} = E_{
m s} rac{X_0}{\epsilon_{
m c}}$$

A = mass number Z = atomic number $N_{\rm A}$ = Avogadro's number V_i = fractional volume E_s = 21.2 MeV = $m_e c^2 \sqrt{4\pi/\alpha}$, $\epsilon_{\rm c}$ = critical energy \rightarrow where ionization energy loss per X_0 is equal to the electron's energy

> Longer showers → skinnier showers

• Ionization and excitation (if charged)

‡ Fermilab

- Ionization and excitation (if charged)
- Strong interaction Cascade
 - Hadronization
 - Secondary hadrons from scattering and such
 - These of course ionize, then do the same
 - Nuclear break-ups
 - Lots of secondary protons and neutrons
 - Photons

Fermilab

- Some of this energy is inherently lost
 - Neutrons very hard to capture

- Ionization and excitation (if charged)
- Strong interaction Cascade
 - Hadronization
 - Secondary hadrons from scattering and such
 - These of course ionize, then do the same
 - Nuclear break-ups
 - Lots of secondary protons and neutrons
 - Photons

Fermilab

- Some of this energy is inherently lost
 - Neutrons very hard to capture

- Ionization and excitation (if charged)
- Strong interaction Cascade
 - Hadronization
 - Secondary hadrons from scattering and such
 - These of course ionize, then do the same
 - Nuclear break-ups
 - Lots of secondary protons and neutrons
 - Photons
 - Some of this energy is inherently lost
 - Neutrons very hard to capture

Fermilab

Ionization Energy loss \rightarrow the energy deposition

 δ = density effect correction $E_{\rm mc}$ = critical energy of muon

Grace Cummings | EDIT School, 15 November 2024

Fermilab

🛟 Fermilab

Ionization Energy loss - Bethe Function

 δ = density effect correction E_{uc} = critical energy of muon

For most HEP energies, muons are minimally ionizing → why large TPCs can do muon calorimetry, but LHC experiments cannot!

🛟 Fermilab

Ionization Energy loss - Bethe Function

A = mass number Z = atomic number z = charge number of incident particle K = 0.307 MeV mol-1 cm2 $T_{\text{max}} = \text{maximum energy transfer to an electron}$ in single collision I = mean excitation energy $\delta = \text{density effect correction}$ $E_{uc} = \text{critical energy of muon}$

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\max}}{I^2} - \beta^2 - \frac{\delta}{2} \right]$$

Very mild material dependence!

🛟 Fermilab

General Designs

Grace Cummings | EDIT School, 15 November 2024

🛟 Fermilab

• Absorber material

Fermilab

- Material to initiate cascades!
 - Need a lot for hadrons
 - Need very little for electrons/photons!
- Desired properties
 - Dense (generally)
 - High Z (generally)

- Absorber material
 - Material to initiate cascades!
 - Need a lot for hadrons
 - Need very little for electrons/photons!
 - Desired properties
 - Dense (generally)
 - High Z (generally)
- Active Material

Fermilab

- Material to indicate ionization
- Desired properties
 - Lots of ionization!
 - Transparent to mode of collection
 - i.e., if you want to collect light, it has to be transparent

• Absorber material

• Material to initiate cascades!

- Need a lot for hadrons
- Need very little for electrons/photons!
- Desired properties
 - Dense (generally)
 - High Z (generally)
- Active Material

🛟 Fermilab

- Material to indicate ionization
- Desired properties
 - Lots of ionization!
 - Transparent to mode of collection
 - i.e., if you want to collect light, it has to be transparent

Sampling calorimeters

Like CMS HCAL barrel and endcap

Homogenous calorimeters

Like <mark>µ</mark>BooNE liquid Argon TPC

Grace Cummings | EDIT School, 15 November 2024

Alternating layers!

- Absorber material
 - Material to initiate cascades!
 - Need a lot for hadron
 - Need very little for electrons/photons!
 - Desired properties
 - Dense (generally)
 - High Z (generally)
- Active Material
 - Material to indicate ionization
 - Desired properties
 - Lots of ionization!
 - Transparent to mode of collection
 - i.e., if you want to collect light, it has to be transparent

Sampling calorimeters

Homogenous calorimeters

Like **<u>BooNE</u>** liquid Argon TPC

7 Fermilab

Grace Cummings | EDIT School, 15 November 2024

Same material!

The two styles

‡ Fermilab

Homogenous

• Everything captured

Sampling

• Only get snapshots of the shower

Great for electrons and photons that deposit all readily deposit energy via ionization

The two styles

Homogenous

• Everything captured

Sampling

• Only get snapshots of the shower

Why would you ever use anything other than homogenous?

The whole rest of the talk will be answering this, in one way or another!

‡ Fermilab

The generic limitations

Grace Cummings | EDIT School, 15 November 2024

‡Fermilab

Challenges to hadronic energy resolution

Fermilab

Challenges to hadronic energy resolution

EM/Had ratio fluctuates event-to-event

(ie, what happens to pop out of your strong interaction)

Figure adapted from Sehwook Lee 2019 J. Phys.: Conf. Ser. 1162 012043

🛟 Fermilab

Why is this a problem?

Response to the different shower components is not the same

Fermilab

Why is this a problem?

Response to the different shower components is not the same

‡ Fermilab

One of the benefits of sampling

Sampling

• Only get snapshots of the shower

High-Z absorber can reduce the electromagnetic response, and encourage neutron capture!

Leveraging this is called compensation

Can tailor absorber material to bring electromagnetic and hadronic responses closer together!

Fermilab

Calorimeter Technologies

Two general principles

Optical Calorimeters

Use light to indicate energy deposition Ionization \rightarrow light

Direct-ionization Calorimeters

Measure the ionization directly

Fermilab

Ionization Calorimeters

Liquid Argon Calorimeters

Example: ATLAS LAr Calorimeter

- Sampling or homogenous
 - Sampling for high energy use
 - Need extra radiation lengths to contain shower
 - Homogenous for TPC

‡Fermilab

Uses the scintillation as well

Liquid Argon Calorimeters

Example: ATLAS LAr Calorimeter

- Sampling or homogenous
 - Sampling for high energy use
 - Need extra radiation lengths to contain shower
 - Homogenous for TPC
 - Uses the scintillation as well
- Require a cryostat
 - This requires a lot of infrastructure!
 - ATLAS LAr calorimeter @ -184 °C
- Moderate granularity
 - granularity :
 - Smallest volume of energy deposition
 - Couple mm

Fermilab

Silicon-Sandwich Calorimeters

- Sampling calorimeter
 - Silicon made in wafers industrially
 - Absorber-Si-readout "sandwiches"
- Ultra-high granularity

Fermilab

- Smallest unit limited by pixel pitch and readout
- Active layer 100s of microns thick

Example: CMS High Granularity Calorimeter Upgrade (ETA 2028)

Silicon-Sandwich Calorimeters

- Sampling calorimeter
 - Silicon made in wafers industrially
 - Absorber-Si-readout "sandwiches"
- Ultra-high granularity

Fermilab

- Smallest unit limited by pixel pitch and readout
- Active layer 100s of microns thick
- Requires low-temperature operation
 - CMS high granularity calorimeter will operate at -30 °C

Example: CMS High Granularity Calorimeter Upgrade (ETA 2028)

Silicon-Sandwich Calorimeters

- Sampling calorimeter
 - Silicon made in wafers industrially
 - Absorber-Si-readout "sandwiches"
- Ultra-high granularity
 - Smallest unit limited by pixel pitch and readout
 - Active layer 100s of microns thick
- Requires low-temperature operation
 - CMS high granularity calorin operate at -30 °C
- "Imaging"

Fermilab

• Reconstruct the event in 5D

Example: CMS High Granularity Calorimeter Upgrade (ETA 2028)

arXiv:2211.04740v2

Gaseous Concepts

- Ionized gas as active material
 - Resistive Plate Chamber (RPCs)
 - Micropattern gaseous detectors (MPGD)
- Fast timing!
 - Separate neutral and charged hadronic showers
- High granularity possible
 - can allow for "digital calorimetry" → does not measure ionization, but counts MIPs

Example: mini-Iron calorimeter for atmospheric neutrino detection @ India-based Neutrino Observatory

‡ Fermilab

Optical Calorimeters

Grace Cummings | EDIT School, 15 November 2024

‡ Fermilab

Physics of optical calorimeters

Cherenkov Light

‡Fermilab

Scintillation Light

Cherenkov Calorimeters

- Capacity to be ultra-fast
 - Cherenkov inherently prompt!
- Radiation hard
 - Simpler materials
- Primarily detect electromagnetic signatures

Uses fiber of different lengths to separate electromagnetic and hadronic showers

Example: CMS Forward Calorimeter! Quartz fibers in steel absorber - **SAMPLING**

‡ Fermilab

Cherenkov Calorimeters

- Capacity to be ultra-fast
 - Cherenkov inherently prompt!
- Radiation hard
 - Simpler materials
- Primarily detect electromagnetic signatures

arXiv:2206.05838

$$\label{eq:concept: Crilin} \begin{split} \text{Example Concept: } \textbf{Cristal Calorimeter with} \\ \textbf{Longitudinal Information} \end{split}$$

- PbF₂
- high granularity crystal!
 - 1 cm x 1 cm x 40 cm crystals
 - 3 mm x 3 mm UV-extended SiPMs

https://doi.org/10.1016/j.nima.2022.167817

Fermilab

Scintillating Inorganic (crystal/glass) Calorimeters

- Why scintillating?
 - Higher light yield
 - Sensitivity to non-relativistic charged particles
- Homogenous crystal calorimeters
 - best electromagnetic energy resolution

	1 million and the second	
MS, X0=0.	89 cm	
PbW04 CN		

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/{ m E}^{1/4}$	1983
$Bi_4Ge_3O_{12}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E}\oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E}\oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16 - 18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999 💙
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5$ GeV	1998
CsI(Tl) (BES III)	$15X_0$	2.5% for $E_{\gamma} = 1$ GeV	2010
$PbWO_4$ (PWO) (CMS)	$25X_0$	$3\%/\sqrt{E}\oplus 0.5\%\oplus 0.2/E$	1997
PbWO ₄ (PWO) (ALICE)	$19X_0$	$3.6\%/\sqrt{E}\oplus 1.2\%$	2008

https://pdg.lbl.gov/2022/web/viewer.html?file=../reviews/rpp2022-rev-particle-detectors-accel.pdf

‡ Fermilab

Grace Cummings | EDIT School, 15 November 2024

e

Scintillating Inorganic (crystal/glass) Calorimeters

- Why scintillating?
 - Higher light yield
 - Sensitivity to non-relativistic charged particles
- Homogenous crystal calorimeters
 - best electromagnetic energy resolution

Complex materials

- Dense crystals like
 - Lead Tungstate (PbWO4)
 - Bismuth Germanate (BGO)
 - Caesium Iodide (CsI)
- Can be homogenous or sampling
- Tend to be less radiation hard and expensive

🛟 Fermilab

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/E^{1/4}$	1983
$Bi_4Ge_3O_{12}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E}\oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E}\oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16 - 18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999 📉
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5$ GeV	1998
CsI(Tl) (BES III)	$15X_0$	2.5% for $E_{\gamma} = 1$ GeV	2010
$PbWO_4$ (PWO) (CMS)	$25X_0$	$3\%/\sqrt{E}\oplus 0.5\%\oplus 0.2/E$	1997
PbWO ₄ (PWO) (ALICE)	$19X_0$	$3.6\%/\sqrt{E}\oplus 1.2\%$	2008

Example: CMS ECAL

‡ Fermilab

But calorimeters are a system!

‡ Fermilab

CMS ECAL makes the hadron calorimetry WORSE

‡ Fermilab

Scintillating Organic (Plastic) Calorimeters

- Plastic is...
 - Less dense
 - Cheaper
 - Customizable!
- For high energy, pretty much always sampling
- Infinitely flexible
 - High granularity
 - Compensating
 - o ..

🛟 Fermilab

 Radiation tolerance can be a problem

The things I have not mentioned

Grace Cummings | EDIT School, 15 November 2024

‡ Fermilab
Things to think about

- Calibration!
 - Especially in segmented calorimeters
 - where you chop a shower matters
 - Using Standard candles for electromagnetic calorimetry
 - Using radioactive sources
- Readout!
 - Photodetection
 - Wavelength sensitive SiPMs
 - Wavelength Shifting Fibers
 - Optical coupling
 - Readout and bandwidth
 - What info do we keep?
 - Where do we route our fiber optic cables?
 - How much do the electronics heat up?

(a) <u>JINST 19 P02009</u>

‡ Fermilab

And now the talk has deposited all of its energy

‡ Fermilab

Conclusions and Summary

- Calorimetry is a large and complex field
 - Everything is interrelated
 - Spans
 - material science
 - HEP
 - mechanical and electrical engineering
- Understanding the fundamentals critical to understanding what you are actually measuring!
- There is no "perfect" calorimeter
 - What features are prioritized depend on your needs (and taste)
- Required Reading: R. Wigman's Calorimetry: Energy Measurement in Particle Physics

🛟 Fermilab

back-up

The two styles

Homogenous

• Everything captured

Great for electrons

‡ Fermilab

- interact immediately
- possible to contain whole shower in reasonable space

Homogeneous calorimeters

- Active material and absorber the same material
 - All of a particle's energy deposition can result in detector response
- Ideal for electrons and photons
 - All kinetic energy goes into ionization
 - Entire material active = all can be seen
- Traditionally poor for hadrons
 - Generally more nonlinear
 - Cannot contain high energy hadrons at colliders
- Not all materials suitable!
 - Needs to be dense enough to contain the energies you are interested in
 - Need to be able to afford it
 - Hard to balance

🛟 Fermilab

How photons lose energy

Compton Scattering

Photoelectric Effect

Pair-production

‡ Fermilab