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DAQ
“DAQ” = Data AcQuisition

● The medium between the physics and our
 experience of it

● A catchall term with an expansive scope

From frontend readout ...

0

… to data on disk
and everything in between
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DAQ
“DAQ” = Data AcQuisition

● The medium between the physics and our
 experience of it

● A catchall term with an expansive scope

● Transforming our collection of sensors …
… into a functional scientific instrument!



DAQ Basics
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Everyday DAQ
You’re already familiar w/ DAQ!

● Analog signal sampling 
and digitization

● High speed data 
transmission 

● DMA, bussed (USB, PCIe) 
communication and 
resource sharing

● Middleware (ie: drivers)
for device control

● Software processing &
data storage   
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More Sophisticated
Proprietary DAQ systems, eg:

● LabVIEW : 

– Perhaps the most familiar
– Graphical programming software for

data flows (also control, automation)
– Designed to support National 

Instruments hardware.  Functions 
with 3rd party h/w as well

– Runs on your PC / laptop

● Matlab/Simulink software
– Similar, but without the direct h/w tie-in
– Graphical or scriptable
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For the Hobbiest
Arduino

● Single-board microcontroller
● Firmware programming via IDK, “C” or python 
● Native analog GPIO, ADC/DAC, etc

Raspberry PI
● ARM based single-board computer
● Linux-based OS

Cheap and accessible!  Get one!

Many sensor & DAQ extension boards 
available for both

● See : Adafruit, Sparkfun, etc
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Not Just For the Hobbiest
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HEP DAQ
Complete commercial DAQ solutions generally not viable in HEP

● Custom sensors and electronics 
● Environmental : remote, irradiated, cold 
● Enormous channel counts
● Huge data rates and data volumes
● Often low latency requirements 

We have to design, implement, 
commission, and operate our own! 
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A Basic DAQ System
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Basic DAQ Tasks
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Something’s Missing ...
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Trigger Warning
A control signal to switch between
sample and hold …

In general, need a signal to 
”trigger” digitization, 
transmission, etc

● Sometimes this is simply a clock edge, ie: a periodic trigger
● But often more involved, eg: 

– A threshold discriminator
– A coincidence trigger
– Physics-based ...  

In HEP, triggering is closely related to DAQ (aka “TDAQ”, more later)



A Simple DAQ System
(borrowing liberally from A.Thea et al for STFC)



11/20/244 EDIT 2024 - DAQ  - K. Hahn 20

Physics Example
Beta decay 

● Start with an ensemble of atoms  
● Poisson probability for decay of individual 

atom within a time interval 
● Time between decays is an exponential 

function

– λ : mean time 
between decays

● Consider 1ms

– f = λ-1 : mean
decay rate
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Physics Example
Beta decay 

● e± generates an analog signal in a PMT    
● That signal follows two paths 

– To an analog discriminator, compares 
with a set threshold, gives a digital output 

– To an ADC, with the input delayed to 
synchronize with the discriminator output

● The discriminator “triggers” the ADC 
digitization

● Once digitized data ready, data processing 
(eg: formatting, calibration corrected) triggered

● Processed data then stored on disk
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Physics Example
Digitization / processing chain takes some
time to complete : latency

● Average decay time is λ = 1 ms, so design 
the chain to accommodate → τ = 1 ms

But time between
decays is random

● What if rate 
fluctuates high?

● Inserting new data
in the chain while
processing risks
corruption ...  
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Physics Example
Protect processing by inhibiting new triggers 
when the chain is busy 

● Limits max throughput to disk to τ-1 = 1 kHz

● This would be the case if, eg, we had a 
perfectly timed clock trigger …

The inhibit introduces deadtime
● Leading to a loss of data collection efficiency
● Ie : fdisk < fphysics

ττ τ τ τ
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Physics Example
Determining fdisk :

● Referred to as robs below, and fphysics = r  ... 

ττ τ τ τ
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Physics Example
Determining fdisk :

● Referred to as robs below  ... 
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Physics Example
Output rate lower than input rate :

Therefore DAQ inefficiency : 



11/20/244 EDIT 2024 - DAQ  - K. Hahn 27

Physics Example
What is the efficiency in our example?

To improve efficiency, can try to reduce τ, eg:

● For instance, via parallelization : more pipelines
● Here would need a factor of 100 over capacity beyond nominal … costly!
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Physics Example
Another approach : derandomization 

● Buffer the data with a FIFO until processing
chain is available
– FIFO =  First In, First Out queue
– Depth given by number of cells
– Both h/w and s/w implementations

Absorbs input rate fluctuations
● Smooths the distribution of arrival time of data

at the input to the ADC
● Processing start becomes more periodic
● But adds to the overall latency 
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Physics Example
Result : efficiency now dictated by buffer occupancy

And occupancy depends on nominal rate and buffer depth

Study efficiency as a function of traffic intensity : ρ = τr

● ρ > 1 : system overloaded

● ρ << 1 : system over-designed

● ρ ~ 1 : system can achieve high efficiency
           with small buffer depth

Influence of buffer depth assessed using  
simulation in most cases
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Physics Example
Processing now retrieves data from the 
queue when ready and data is available 

Busy logic must monitor occupancy

● Otherwise FIFO can overflow

● Assert trigger inhibit when FIFO close to full
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Physics Example
Processing now retrieves data from the 
queue when ready and data is available 

Busy logic must monitor occupancy

● Otherwise FIFO can overflow

● Assert trigger inhibit when FIFO close to full

The FIFO adds latency, therefore delay

● Can replace the ADC delay with an 
analog equivalent (“pipeline”)

● Heavily used at the LHC : frontend buffers 



DAQ Scaling
(borrowing liberally from A.Thea et al for STFC)
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Scaling Up

Frontend data conditioning 
● Digitization (often), buffering 
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Scaling Up

Frontend data conditioning 
● Digitization (often), buffering 

Frontend readout
● Sampling, formatting, buffering 

Event building
● Data assembly, buffering 

Event filtering 
● Select/reject, event buffering 

Event storage 
● File logging, file buffering 
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Scaling Up
Buffering needed at all stages

No buffers should overflow

● Occupancy at one stage used 
to inhibit the preceding 

● Inhibit propagates upstream 
until it reaches the trigger

● Referred to as “back-
pressure”
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Implementation

A Multi-tiered DAQ

● With basic functional units 
replicated within each tier 

Ingredients

● Detector structures

● Readout & control cards 

● Backend crates

● Racks 

● Server farm
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Implementation

Different technologies 
employed at different levels 



11/20/244 EDIT 2024 - DAQ  - K. Hahn 42

Implementation

Different technologies 
employed at different levels 

Frontend : ASICs
● Custom circuits 
● Often radiation tolerance
● High speed, deterministic
● Buffering is expensive ...
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Implementation

Different technologies 
employed at different levels 

Backend processing : FPGAs
● Customizable logic
● Real time performance
● Resources : RAM, DSPs, 

MGTs, etc
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Implementation

Different technologies 
employed at different levels 

Event handling : CPUs, GPUs
● Relaxed latency requirements 

allows for batch processing  
● Resources available for complex 

algorithms
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Implementation
Backend FPGAs hosted on custom PCBs 

● Providing upstream and down stream connectivity
● Interfaces to trigger and timing  
● User access via microcontroller, sytem on chip, 

system on module, etc … 

Backend boards housed in crate / shelf :
● Providing power, cooling, networking, etc
● Often extending in the rear with additional boards
● Boards generally communicate via the backplane
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Implementation
Backend FPGAs hosted on custom PCBs 

● Providing upstream and down stream connectivity
● Interfaces to trigger and timing  
● User access via microcontroller, sytem on chip, 

system on module, etc … 

Backend boards housed in crate / shelf :
● Providing power, cooling, networking, etc
● Often extending in the rear with additional boards
● Boards generally communicate via the backplane

– Similar to peripheral cards in a PC
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Implementation

Communication schemes : bus vs network

● Both have their advantages
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Implementation
Busses : communication over shared electrical lines

● Access to the comm channel must be arbitrated
● Master/slave transactions
● Unique bus IDs / addresses
● Examples : PCIe, USB, NIM, VME

Considerations
● Easy to add a new device
● Number of devices limited
● Typically slow

– Bandwidth limited by bus width
– Frequency by physical length
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Implementation
Network : point-to-point communication among peers

● Electrical, optical, wireless 
● Switched networks, different topologies
● Unique network addresses
● Examples : Ethernet, Infiniband

Considerations
● Easy to add a new device
● Scalable, guaranteed bandwidth
● Congestion : latency usually not 

guaranteed
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Implementation Example : CMS SST

ASICS
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Implementation Example : CMS SST
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Implementation Example : CMS 
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Large Scale DAQ : LHC 
LHC experiments provide 
examples of large multi-tiered 
DAQ

● 106-108 channel counts
● O(MB) event sizes
● High data rates

But interesting differences 
among them!
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Large Scale DAQ : LHC 
Physics based triggers

● Interesting physics has low cross 
section → need high luminosity!

● But uninteresting physics contributes 
with high cross section

● Can’t store it all … 
● Event filtering based on interesting 

physics signatures
– Eg: High energy jets, leptons

● Multi-level event selections
– Coarse with low latency in h/w
– Particle-like with higher latency in s/w
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Large Scale DAQ : LHC 
Example : ATLAS & CMS trigger tiers 

Hardware Level-1
● FPGA-based
● Detector readout upon 

accept
● Latency O(10) μs
● Accept rate ~100 kHz

Software HLT
● Offline-like reconstruction 
● 100 GB/s network,
● 104 cores
● Latency O(ms) ++ 
● 1 kHz accept rate

μ μ
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CMS Run-1 TDAQ 
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CMS Run-2/3 TDAQ 
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ATLAS Run-1 TDAQ 

HLT reconstruction
Seeded by Level-2
Regions of Interest 
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ATLAS Run-2/3 TDAQ 
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LHCb Run-2 TDAQ 
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LHCb Run-3 TDAQ 

GPU selection (HLT1) colocated with 
PCIe event building
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Summary 
A short introduction to DAQ

● From basic ingredients : trigger, buffers, back-pressure
● Then scaling from few to many channels

– Multi-tier DAQ, data transfer 

●  Ending with full implementations
– Using LHC experiments as the example 



11/20/244 EDIT 2024 - DAQ  - K. Hahn 63

Summary 

The magic animating our experiments!

A short introduction to DAQ
● From basic ingredients : trigger, buffers, back-pressure
● Then scaling from few to many channels

– Multi-tier DAQ, data transfer 

●  Ending with full implementations
– Using LHC experiments as the example 
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Summary 
A short introduction to DAQ

● From basic ingredients : trigger, buffers, back-pressure
● Then scaling from few to many channels

– Multi-tier DAQ, data transfer 

●  Ending with full implementations
– Using LHC experiments as the example 

Much more to cover than time permits!
● Techniques and protocols, control paths, timing & synch
● Local DAQ : detector-specific procedures for acquiring sensible data

– Noise scans, signal injection tests, calibrations …
● TDAQ for future experiments
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