
RNTuple API Review – Discussion of Midterm Findings

Jakob Blomer for the ROOT Team, CERN (EP-SFT)
HEP-CCE2/SOP
24 September 2024

Plans and Follow-Ups I

• RNTupleView

• The class will be changed to behave like an REntry with a single field
• Thus, the question of owning or non-owning storage will become a runtime decision
• Tracked as issue #16321

• REntry use in RNTupleReader, RNTupleWriter

• Intention for the reader and writer API wrt. REntry handling is to be symmetric
• Both RNTupleReader::LoadEntry() and RNTupleWriter::Fill() take an optional

REntry argument.
• If not provided, they use the default entry of the RNTupleModel
• One difference between reading and writing is that the model reconstructed from the file

always has a default entry, even if not used. This will be fixed, tracked as #16324 .

jblomer@cern.ch RNTuple / HEP-CCE2/SOP 1 / 8

https://github.com/root-project/root/issues/16321
https://github.com/root-project/root/issues/16324

Plans and Follow-Ups II

• Page Size Tuning & Memory Consumption on Write

• Addressed by a new, adaptive algorithm to set page sizes (merged).
• The new algorithm grows the pages as needed, so that dense columns get large pages and

sparse columns small ones.
• Pages still have an absolute limit (default 1MB) and the overall memory budget used for

page buffers is limited.
• Good first results on CMS MiniAOD (smaller files than TTree, memory overhead wrt. TTree

halfed); still room for memory improvement

• Flexible Control of RClusterPool

• Tracked as issue #16325

jblomer@cern.ch RNTuple / HEP-CCE2/SOP 2 / 8

https://github.com/root-project/root/issues/16325

Plans and Follow-Ups III

• Indexing

• Larger scope; work on it has started.
• A new class, the RNTupleProcessor implements iterations of non-trivial joins of RNTuples

(in contrast to simple/single RNTuple iteration of the RNTupleReader
• Initial version of the RNTupleProcessor and indexing capabilities merged.
• Full functionality expected in 2025

jblomer@cern.ch RNTuple / HEP-CCE2/SOP 3 / 8

Plans and Follow-Ups IV

• RNTupleParallelWriter

• Clear guarantees about the locking around TFile
• New method “FillNoCommit()” allows framework to control time of TFile access
• New staged cluster committing allows to set the logical cluster ordering after flushing;

facilitates “data barriers” such as lumi block separation

• We will implement the minor suggestions for API improvement (points 7–9)

jblomer@cern.ch RNTuple / HEP-CCE2/SOP 4 / 8

Discussion of Open Questions

• RNTupleModel & GetToken()

• The frozen state can be explicitly set by the user through Freeze() and Unfreeze() APIs.
Both calls are idempotent.

• Users can call Freeze() and Unfreeze(). Note that unfreezing a model will change the
model id. As a result, after refreezing, existing REntries cannot be used anymore for
reading and writing.

• The model is implicitly frozen when passed to the RNTupleWriter / RNTupleReader and on
committing a changeset for the late model extension
(RNTupleModel::RUpdater::CommitUpdate())

• The model is implicitly unfrozen at the beginning of the RNTupleUpdater
(RNTupleModel::RUpdater::BeginUpdate()).

• GetToken() can be called on any frozen model. This will probably change such that tokens
can also be created while constructing a model.

• Note that currently tokens cannot be applied to clones of models. This will be fixed
(#16326).

jblomer@cern.ch RNTuple / HEP-CCE2/SOP 5 / 8

https://github.com/root-project/root/issues/16326

Discussion of Open Questions

• Projected Fields

• Field projections are stored as projections on-disk.
• When reading, the user can decide whether the model reconstructed from disk should treat

projections as projections, or present them as if they were physical fields (see
RCreateModelOptions)

• Note that models with projected fields cannot be used for the RNTupleReader (but, e.g., as
a source for cloned model for skimming). The restriction on the RNTupleReader can be
lifted if needed.

• Late Model extension

• Late model extension will unfreeze the model at the beginning of the transaction and
(re-)freeze the model when the extension is committed.

• As a result, the model ID will change.
• All existing REntry objects and tokens created from the model cannot be used anymore but

new entries and tokens need to be retrieved.

jblomer@cern.ch RNTuple / HEP-CCE2/SOP 6 / 8

Timeline and Next Steps

• Most of the points will be addressed this year

• Improvements to the RClusterPool may overflow into next year

• The work on indexing and the RNTupleProcessor will most likely conclude only in 2025

In terms of ROOT releases

• Target for the RNTuple 1.0 binary format is 6.34 (November):

• Backwards-compatibility for data written in this format
• We will break backwards compatibility for experimental RNTuple format versions (clean slate)

• Target for moving the reviewed set of classes out of experimental: ROOT 6.36 (H1/2025)

jblomer@cern.ch RNTuple / HEP-CCE2/SOP 7 / 8

Many thanks for the thorough and useful feedback!

jblomer@cern.ch RNTuple / HEP-CCE2/SOP 8 / 8

