The DUNE Experiment and the SAND detector

- DUNE is a large US-based neutrino experiment
- SAND is one of the "Near Detectors", hosted at Fermilab, near Chicago
 - SAND is enclosed by a 0.5T superconducting magnet

GRAIN, the Active Argon Target in SAND

- A 1-ton target in a "thin" cryostat
 - Detect Liquid Argon scintillation light
 - > 60k Silicon PhotoMultipliers

25/9/2024

Images courtesy G. Piazza

Readout system

• 64 "Camera" PCBs

25/9/2024

- One 1024 channel custom cryogenic ASIC
- 8 cameras connected to each feedthrough
 - DN160CF flange on both inner and outer vessel
 - Air vacuum and vacuum Liquid Argon

Electrical connections

- Each of the 8 camera board requires the following connections
 - 3-4 x LVDS clock/data lines operating at 625 Mbps (100 Ω differential)
 - $1 \times \sim 100$ MHz analog signal (likely 100Ω differential or 50Ω single ended)
 - 6-8 x single ended "slow" data lines
 - At least 6A current for core power
 - At least 3 more auxiliary power/bias lines (up to 50V, but low current)

Connection Density is an issue

- Ideally we would route the 100 Ohm lines over a pair of coaxial
 - Most likely cannot fit, even using coaxial in combination SUB-D
 - Would require up to 64 coaxial connectors and ~100 standard pins

- Using fewer lines requires a circuit in Argon to split/merge signals
 - Adds complexity, power dissipation, single point of failure

25/9/2024

Workaround, still to be tested

- Use a smart layout of the pins on a regular high density Sub-D
 - Approximate a coaxial connection
 - "close enough" to 100 Ohm impedance to carry LVDS
 - Preliminary testing suggests signal quality is ~OK, must check crosstalk

Possible layouts

Early test results

HD SUB-D

Regular SUB-D

6 x SUB-D

25/9/2024