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Career Path

* BSin Electrical Engineering * MSin Computer Science

* Minors in Telecomm. * Published researchin

* Diploma in Wireless Network Bayesian Modeling,
Design Student Modeling,

* Founded Codito Graph Theory
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Research in unsupervised
deep learning

* Equivariant Modeling
* Metric Estimation

* Metric Learning

« Computer Vision
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Some Areas of Research and Engineering Work

y

Equivariance and Symmetry
@ Focus for about 8 years
@ Applications in materials design, graph neural networks

@ Synergies with UQ and conformal prediction, and
science automation

.

Conformal Prediction and UQ
@ Focus for 4-5 years
@ Applications in healthcare and time series analysis

@ Adaptive, efficient bands; adaptation to large language
models
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Some Areas of Research and Engineering Work

p
Large Language Models
@ Product development: Alter Igo; Startup: Reexpress
@ Work on uncertainty quantification

@ Interest in tying UQ to decision-theoretic and control
setups

. y

)
Simulation-Based Inference
@ Connections to conformal prediction

@ Credible regions with approximately conditional
guarantees in scientific discovery problems

@ Connect to instrumentation and automation
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Some Areas of Research and Engineering Work

Machine Learning in the Physical Sciences
@ Collaborations in dark matter, SZ clusters, CMB
@ Materials discovery and glassy dynamics

@ Interest in PDEs-based modeling, fluids, and learning
dynamical systems

A iy

Selected Industrial Work
@ Product development in LLMs, demand forecasting

@ Handling of solution deployment end to end in different
contexts: development, deployment on the cloud,
compliance, monitoring, scaling, putting off fires
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Some Areas of Research and Engineering Work

@ Broad Theme: Develop efficient machine learning
models with prescribed behavior that can be deployed
reliably, or which can be used to make valid scientific
inferences more efficiently.

@ Reliability can be in physical terms (physical constraints
or laws), or statistical or decision theoretic. Each
requires developing a separate set of tools.

@ Connect individual components in view of the broader
system they are embedded in. Develop the systems view
more in the context of reliable and efficient learning and
inference.
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Overview of Some Work in UQ
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Distribution-Free UQ
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Uncertainty Estimation in Natural Language Generation

 Fix the LLM. Given an input x, the base LLM generates responses s ~ P(S|x)

« Goal: Quantify the uncertainty/confidence of the generation(s)

« Downstream tasks:
* Pick the best answer
» Refuse to answer uncertain questions

l g l There’ no cure
A large flock of birds
ﬁl- It was so short and caused so much quaratic

O==O

Why was the plague
that struck Athens so
devastating?

It happened just as farming season began

input x Base LLM response(s) s

| | | UQforNawnlLanguogeGeneration [




Uncertainty vs Confidence

« Uncertainty measure is a property of the perceived predictive distribution
« Takes the form of U(x)
“Dispersion” or “Variance” of the predictive distribution

There’s no cure

Why was the
plague that
struck Athens so
devastating?

A large flock of birds

3

It was so short and caused so much quaratic —— High Uncertainty

It happened just as farming season began

I [
A.m;g By foot

How was he s N

: »>
traveling then? Walked

Probability Density

On foot

| | UQforNawnlLanguogeGeneration [




Uncertainty vs Confidence

« Confidence measure depends on both the predictive distribution and the answer
« Takes the form of C(s|x)
« Should correlate to P(correct) perceived by the model itself

There’s no cure —— High Uncertainty

A large flock of birds

iﬁr It was so short and caused so much quaratic
o . l o High Confidence
. . It happened just as farming season began N{:e

| | | UQforNawnlLanguogeGeneration [

Why was the
plague that
struck Athens so
devastating?

Probability Density




In the press

« UQ with Distribution Shifts

» Estimate distribution shift with domain adaptation techniques (e.g. hospitals with many patients’ data)

 Uncertainty Estimation for Long Text

« Assigning uncertainty to each semantic segment
* How to segment the long text
« Evaluation (which could be costly)

* Uncertainty Expression in NLG
» Prediction set doesn’t just work for NLG, due to semantic invariance
« What does an uncertainty of -0.3 mean? (Natural language expression like “I'm confident that” or use comparisons)

« Conformal NLG

« Learning to abstain than assuming a correct generation exists



Hallucination Classifications and other LLM problems

User Input

Can you recommend a delicious recipe for
o dinner?

LLM Response
a2 Yes, here is a delicious recipe for lunch. So BEGIN, QMSum Type Turn Example
(e - - - b b
q b how about fried c_h_lcke.n with mashed FENMT,FEQA Ambiguit User ~ What is the capital of France?
@OR potatoes? In addition, tomatoes are also an ’ gty :
. . N Model The capital of a European country.
excellent pairing for this dish as they are
rich in calcium. Enjoy this steakl User How can I replace a flat tire on my car?
Incompleteness To replace a flat tire, there are four steps. First, you’ll need to use a jack
Model . .
to lift the car. Second, please remove the lug nuts and flat tire.
Hallucination Ex Plﬂnﬂﬂon Hades User  Tell me about a typical elementary school teacher.
Bias

Input-Conflicting Hallucination: the user wants a Model A typical elementary school teacher is a woman who is patient, nurtur-
recipe for dinner while LLM provide one for lunch. ing, and skilled at managing a classroom full of young children.

User  Introduce the most popular task in NLP in 2022.

Under-informativeness
Con‘l‘exT-Conﬂicﬂng Hallucination: steak has not been Model  Sorry, I don’t know. Maybe you can check external search engines.

i . . TruthfulQA,,FActScore,
mentioned in the preceding context. HaluEval, FACTOR...

Hallucination is not the only problem
Fact-Conflicting Hallucination: tomatoes are not rich
in calcium in fact.

Siren’s Song in the Al Ocean: A Survey on Hallucination in
Large Language Models https://arxiv.org/pdf/2309.01219




Overview of Work in Equivariance
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G-Equivariance
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G-Equivariance
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Canonical Example: Image Recognition

d j
> CAT
4
> CAT
s N

» Input X is Z2, Set of transforms G is Z?



Presenter Notes
Presentation Notes
The title is DFUQ, but I’d like to first explain that is a non-DF UQ.

Non-DF UQ: UQ comes from assuming the underlying model/distribution 
�DFUQ: do not make assumptions about the form of the underlying distribution 


3D Shape Classification

» Input X is in R”, Set of transformations G' would be SE(3)
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Graph Classification

Expect feature map ¢ to satisfy ¢(G) = ¢(G’)

» X =0G,G=8§,
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A Sample Motivation from Chemistry
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Application in the Physical Sciences Abound

» Interatomic Potentials
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Batzner et al., 2022; Smidt, Geiger, Sun, Kozinsky
Ceriotti, 2022; Csanyi, Pozdnyakov, Batatia,
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Application in the Physical Sciences Abound

» Particle Physics

Bogatskiy et al., 2020; Chen ef al., 2022,
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Application in the Physical Sciences Abound

» Modeling Gauge Theories
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Luo, Chen, Hu, Zhao, Mikyoung Hur, Clark
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Application in the Physical Sciences Abound

» Quantum Spin Liquids
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Broholm, Cava, Kivelson, Nocera, Norman, Senthil
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When is Equivariance Most Useful?

1 Physically feasible outputs

» Molecular dynamics simulations: If exact symmetries aren't
respected, generated trajectories could lead to unphysical outputs.

2 Task-relevant extrinsic symmetry is huge

» Lattice Field Theories: The group of interest is SU(3
number of sites in a 4-D lattice

» Robotics and tasks involving large molecules

)V, where N is

3 Intrinsic (local) symmetries are large e.g. crystals, fluids
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Overview of Work in Equivariance
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Experiment

Model q, = f(8)
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Identify Mechanistic Models Consistent with Data
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Model Mis-Specification

_

Can you trust the simulator? Can you trust the neural network?

e Model uncertainties explicitly: e Sanity checks: expectation values, “critic” tests

nuisance parameters + profiling / marginalization " Neyman constructnon with toys

e Make analysis robust: (badly traine etwork can lead to suboptimal limits, but
ideas from domain adaptation, algorithmic fairness not to wrong !|;‘.“.ns__!
[G. Louppe, M. Kagan, K. Cranmer 1611.01046; [JB, G. Louppe, J. Pavez, K. Cranmer 1805.00020]

Alcina B \WanmAali QN2
J. r—\.:fv!;’:{_jl. D. VWanaeit 1 7us.l

. Emplrlcally, ensembling and calibration help

le Castro, T. Dorigo 1806.04743] [JB, G. J. Pavez, K. Cranmer 1805.00020:;
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e (Conservative Iosses

RN g, T AT 1 2INA -5 "\ 7Q1
[;f"-.. Delaunoy et al 2208.1362 24, 2304.10978
) J

Courtesy: Johann Brehmer
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The use of SBI in Physics

« Language Around SBI:
« SBI has a rich history in economics in the guise of indirect inference
« SBI in Physics is less inference in the classical sense than a form of prediction over parameters
 Statistical guarantees are rarely considered
« SBI Methods tend to be over-confident
« Testing in physics seems restricted over toy scenarios
« Similar methods in ML have a downstream utility

» Philosophical quandary: In physics contexts adjudicating whether the theory is “saving the
phenomena” is tricky
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Initial Work Plan via “Waldo”

SIMULATOR
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« Reliability of Waldo and Clarifying SBI Usage

« Credible regions can be made more efficient: Using methods similar to LVD (NeurlPS’21), but
learning a metric over simulated datasets (across different parameter priors).

« Focus on a family of priors (or a zoo of datasets) and train a general NPE; for “inference” rely
on dataset proximity to weigh inferred parameters

« Start with toy data and consider real data in different areas (e.g. particle physics)

« Write a position piece about the history of SBI, clarifying terminology, and working out a
taxonomy. Connect to areas such as predictive inference/conformal prediction
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Broader Goal

« Bringing Distribution-Free UQ to SBI
« How can the success of formalisms such as conformal prediction be replicated in SBI?
* What are the pitfalls and relations to areas such as domain adaptation

« Statistical Guarantees in SBI
 Valid credible regions that serve as a first line of sanity check
 Inform better empirical diagnostics
« Produce a series of papers exploring these goals from a theoretical and conceptual perspective

« Testing on Real Data
 Verify validity or lack thereof based on well-known and well-studied observed datasets

« Interrogating the purpose and sociology of SBI in Physics

* Produce a position piece about the terminology and philosophical underpinnings, and where
SBI could benefit from a more rigorous treatment
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Thank youl!
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