
The Technical Design Report (TDR) for SAND in the ND complex

Paolo Bernardini, Lecce, Italy DUNE Collaboration Meeting October 1st, 2024

An overleaf is adopted according to LATEX conventions for LBNF/DUNE documents

shared with SAND people

H.A. Tanaka (ND tech. coordinator)

A.E. Heavey (scientific editor)

The figures in sand-figure and the files in sand-tdr are input for sand-main.tex

Dedicated overleaf for GRAIN and SOFTWARE Working Groups, periodically copied in main overleaf

sand-tdr

- **abstract.tex**
- analysis.tex
- computing.tex
- daq.tex
- ecal.tex
- **example.tex**
- grain_old.tex
- grain.tex
- I&I.tex
- magnet.tex
- management.tex
- my_citedb.bib
- my_final.tex
- my_glossary.tex
- overview.tex
- reconstruction_old.tex
- reconstruction.tex
- **s**afety.tex
- schedule.tex

Sections in the SAND chapter

- Overview (requirements & opportunities)
- 2. Lead/Scintillating-Fiber Calorimeter (ECAL)
- 3. Superconducting Magnet
- 4. Liquid Argon Active Target (GRAIN)
- 5. Tracker
- 6. Data Acquisition (DAQ) Architecture
- 7. Detector Control (DCS)
- 8. Detector Safety System (DSS)
- 9. Software & Computing
- 10. Event Reconstruction
- 11. Analysis
- 12. Installation & Integration
- 13. Safety
- 14. Organization & Management
- 15. Time Schedule
- 16. Possible Upgrades

my_glossary.tex

my_citedb.bib

New DUNE words and new references in evidence (at the file end)

1.1	Overvi	ew	1
	1.1.1	Requirements and SAND Role	2
	1.1.2	Requirements and SAND Role	3
		Derived SAND Capabilities	
	1.1.4	Opportunities for SAND	6

Updated according to the task-force document (approved in DUNE general meeting, May 2024)

To do: careful reading and corrections (volunteers?)

Possible improvements (mainly in Sec. 1.1.4)

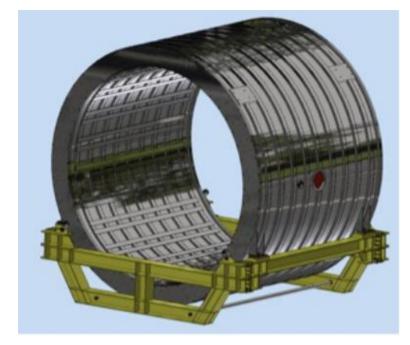
1.2	Lead/S	cintillating-Fiber Calorimeter (ECAL) $\dots \dots \dots \dots \dots \dots $
	1.2.1	ECAL Design and Structure
	1.2.2	Performance in KLOE Experiment
		Requirements for ECAL
	1.2.4	ECAL Calibration and Monitor System
	1.2.5	ECAL Calibration and Monitor System
	1.2.6	ECAL Dismounting Procedures
	1.2.7	ECAL Revamping and Test before SAND Installation
	1.2.8	ECAL Installation & Integration
	1.2.9	Risk Management
	1.2.10	Schedule and Milestones

Draft available in time

July 22-23, 2024 - Preliminary Design Review (PDR)

To be updated according to recommendations

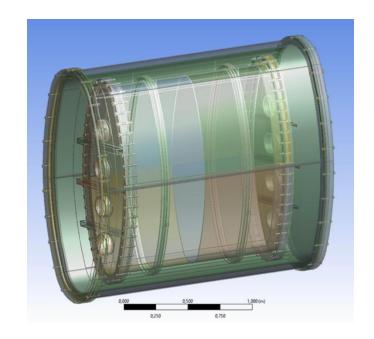
Possible improvements (mainly in Sec.s 1.2.8, 1.2.9)


Refinements expected within ~ 15 October

1.3	The Su	perconducting Magnet
	1.3.1	Magnet Specification
	1.3.2	Magnet Maintenance and Revamping Options
	1.3.3	Activities at Laboratori Nazionali di Frascati
	1.3.4	Installation & Integration at Fermilab
	1.3.5	Risk Management

To be updated according to recommendations

Possible improvements (mainly in Sec.s 1.3.4, 1.3.5)


Refinements expected within ~ 15 October

1.4	LAr Ac	tive Target (GRAIN)
	1.4.1	Introduction and Physics Requirements
	1.4.2	Mechanical Design
	1.4.3	Optical Detector
	1.4.4	Readout System
	1.4.5	Data Acquisition and Slow Control System
	1.4.6	Data Acquisition and Slow Control System 27 pages Neutrino Event Reconstruction 105
	1.4.7	Calibration System
	1.4.8	Cryogenic System
	1.4.9	First Commissioning in Laboratori Nazionali di Legnaro
	1.4.10	Integration and Installation in SAND

Present text and figures about - physics requirements

- lens description
- ASIC requirements

- mechanics
- SiPM arrays
- 3D reconstruction

To be completed

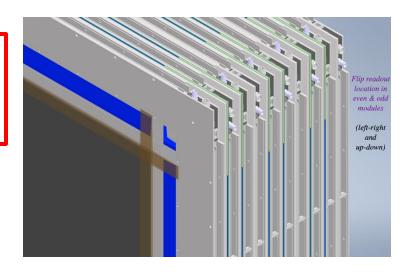
- coded mask description
- reconstruction with voxels

- simulation & results

To be written

- prototypes

- cryogenics

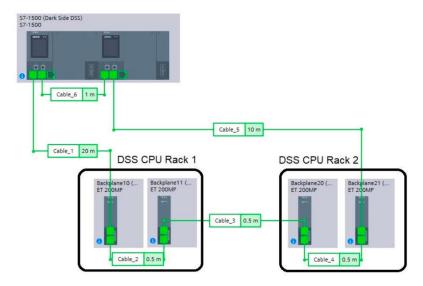

- calibration

- integration & installation

1.5	Tracke	er
		STT
	1.5.2	Drift Chamber
	1.5.3	Gas System

Present - figures and tables about STT geometry

Missing - subsubsections about STT


- subsection about Drift Chamber
- subsection about Gas System

1.6	DAQ A	Architecture
		DAQ Interfaces
	1.6.2	Synchronous Interfaces
1.7	Detect	for Control (DCS)
	1.7.1	DCS Devices
	1.7.2	DCS Unifying Standards
	1.7.3	Detector Operation
	1.7.4	Basic and Advanced Operations
		DAQ-DCS Interfaces
1.8	Detect	or Safety Systems (DSS) \ldots
	1.8.1	DSS Devices
	1.8.2	DSS Control Hardware
	1.8.3	DSS Rack

Ready draft - DSS

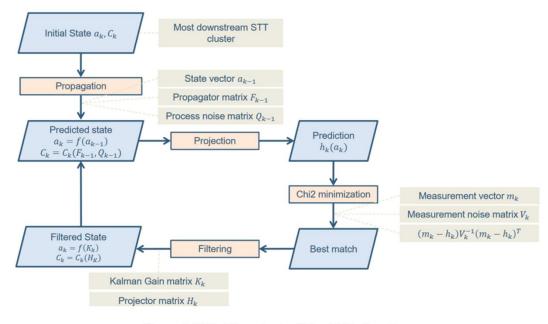
- DAQ - DCS To be completed

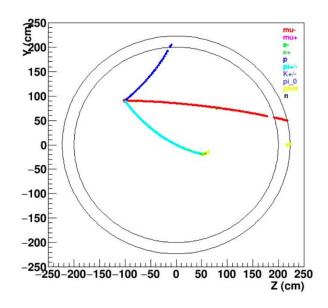
1.9	Softwa	re and Computing
	1.9.1	Code
	1.9.2	Simulations
	1.9.3	Reconstruction (Algorithms)
	1.9.4	Reconstruction (Algorithms)
	1.9.5	Computing resources
	1.9.6	Visualization
	1.9.7	Integration

Present

- GRAIN simulation
- ECAL simulation & clustering
- Kalman filter
- edep-sim output

Missing - computing resources




Figure 1.108: Flow chart of the EKF algorithm.

1.10	Event	Reconstruction (Performance)	 	. 163
	1.10.1	Single Particle Reconstruction	 	. 163
	1.10.2	Particle Identification	 	. 184
	1.10.3	Neutrino Interaction Identification in the Spill	 	. 203
	1.10.4	Event Reconstruction in GRAIN	 	. 203
	1.10.5	Tracker and CC Acceptance for Muons, Protons, Pions	 	. 203
	1.10.6	Event Reconstruction in STT	 	. 203
	1.10.7	Neutrino Energy Reconstruction in Inclusive CC Events	 	. 206

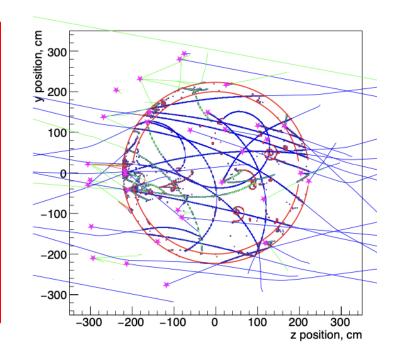
Present

- single particle reconstruction (GEANT & FLUKA)
- particle ID
- event reconstruction in STT
- neutrino energy reconstruction

To write - identification of neutrino event in the spill

To do - careful reading and corrections (volunteers?)

Mainly from the document DUNE-doc-13262-v7


"A Proposal to Enhance the DUNE Near-Detector Complex"

1.11 Analysis
1.11.1 Selection of CC Interactions
1.11.2 Measurements of $\nu(\bar{\nu})$ -Hydrogen Interactions
1.11.2 Measurements of $\nu(\bar{\nu})$ -Hydrogen Interactions 80 pages
$1.11.4$ Constraining the Nuclear Smearing in Ar \dots
$1.11.5~ u$ -e Elastic Scattering $\dots\dots\dots\dots\dots\dots$ 250
$1.11.6$ Coherent π^\pm Production
$1.11.7~ u_e/ u_\mu \& ar u_e/ar u_\mu$ Flux Ratios $\dots \dots \dots$
1.11.8 On-Axis Beam Monitoring
1.11.9 External Backgrounds

Present

- selection of CC interactions

- measurement of fluxes

Ar

- v-e scattering
- on-axis beam monitoring
- external backgrounds

- v-H interactions

- nuclear smearing in

- coherent π production

- ν_e/ν_μ ratio

From the document DUNE-doc-13262-v7

"A Proposal to Enhance the DUNE Near-Detector Complex"

To do

- careful reading and corrections (volunteers?)

- possible new topics

To be written

1.12 | 1 & I
1.13 | Safety
1.14 | Management
1.15 | Time Schedule
1.16 | Possible Upgrades

Present: tables about sizes, weights and storage @ FNAL of yoke, coil and calorimeter

Present: 315 pages

256 figures 64 tables

- 1. Overview 6 pages to be checked
- Lead/Scintillating-Fiber Calorimeter (ECAL) 3 91 pages to be updated
- Superconducting Magnet
- Liquid Argon Active Target (GRAIN) 27 pages in progress
- 5. Tracker 6 pages at the beginning
- 6. Data Acquisition (DAQ) Architecture
- 7. Detector Control (DCS)
- 8. Detector Safety System (DSS)

- 8 pages to be completed
- 9. Software & Computing 24 pages at the beginning
- 10. Event Reconstruction
- 11. Analysis

132 pages - to be completed

- 12. Installation & Integration
- 13. Safety
- 14. Organization & Management
- 15. Time Schedule
- 16. Possible Upgrades

At the very beginning (some tables) 1-2 pages for each section

Indexes and keywords are defined

Instructions for the authors

- Insert the reference in the bibliography (bibitex format)
- · Check if some word is present in the glossary and use it
- Insert new words in the glossary
- Check the reference to equations, figures, tables
- Write your name in the text %% author?
- Take into account the DUNE editing rules

https://dune.bnl.gov/docs/guidance.pdf

Todo list

complete the sentence
an example of the relevant safety standards at Fermilab
per o for ??
reference ?
figure 4.7 ?
BOLOGNA now
reference ?
equation ?
unita di misura nella figura?
what section for ASIC ?
to be completed ?
to be completed ?
to be completed ?
insert a reference
insert a reference
insert a reference

Glossary

Insert new DUNE words and new DUNE abbreviations at the end of this file

Check if the word is already present

To define a DUNE term that has no abbreviation use:

\newduneword{label}{term}{description}

To define a DUNE term with an abbreviation use:

\newduneabbrev{label}{abbrev}{term}{description}

Examples

\newduneword{detmodule}{detector module}{The entire DUNE far detector is
segmented into four modules, each with a nominal \SI{10}{\kton}
fiducial mass}

\newduneabbrev{adc}{ADC}{Analog Digital Converter}{A sampling of a voltage
 resulting in a discrete integer count corresponding in some way to
 the input}

Bibliography

Insert references (bibtex format) at the end of this file

Check if the reference is already present

DUNE Words from the glossary

\dfirst{fnal} first time Fermi National Accelerator Laboratory (Fermilab)

\dword{fnal} following times Fermilab

More informations in the glossary

Fermi National Accelerator Laboratory (Fermilab) U.S. national laboratory in Batavia, IL. It is the laboratory that hosts Deep Underground Neutrino Experiment (DUNE) and serves as its near site. 1

\dfirst{nd}	near detector (ND)	with link
\dword{nd}	ND	with link
\dlong{nd}	near detector	w/o link
\dshort{nd}	ND	w/o link

\dword singular \dwords lower case & plural \Dword capital \Dwords capital & plural

common/units.tex to define commands for units

Examples

"m" is written \si{\meter}

bare units

"V" is written \si{\volt}.

"123.456" is written as $\sum \{123.456\}$.

bare numbers

" $1\pm 2i$ " is written as \num{1+-2i}.

" 3×10^{45} " is written as \num{3e45}.

" 0.3×10^{45} " is written as \num{.3e45}

"120 GeV" is written as \SI{120}{\GeV}, numbers and units

"4850 ft" is written as \SI{4850}{\ft},

Figures

JPEG use for photographs

PDF use of any line drawings, plots, illustrations

PNG use due to some inability to produce proper JPEG or PDF (contact editors)

English

- Use American spelling: e.g., ionization (not ionisation), flavor (not flavour) and so on.
- In general, avoid use of first person (e.g., I, we, our). "We" may appear in introductory sections.
- Avoid use of second person, i.e., "you."

Final remarks

- * Write-up of SAND-TDR has started (February 2024) and is going on
- Main part of data are available, it's just a matter of writing
- ❖ First review about ECAL+magnet in July 2024
- What measurement to evaluate the TDR progress?

Number of pages: 315!
Text quality? Difficult answer

- ❖ To do:
- > Some sections to be written and completed
- > Editing according to DUNE rules
- > SAND internal reading to "measure" the text quality

Backup slides

Hiro Tanaka, September 9, 2024 Collaboration Meeting

	Chapter Draft	Design Review	Ready for LBNC
Intro/Physics	Jun 24	N/A	Jul 24
ND-LAr (final)	Nov 24	Dec 24	Feb 25
TMS	Nov 24	Jan 25	Feb 25
SAND*	Jun 24-Feb 25	Jul 24-Mar 25	Apr 25
ND-LAr Cryostat	Jun 24	Jul 24	Aug 24
NS LAr Cryogenics	Jun 24	N/A	Aug 24
DUNE-PRISM	Nov 24	Dec 24	Jan 25
ND DAQ	Nov 24	Jan 25	Feb 25
ND Slow Control			Feb 25
ND I&I	Nov 24	Dec 24	Jan 25

^{*} SAND will divide process into KLOE-2-SAND, Tracker, GRAIN, Integration

More details for SAND

Preliminary Design Review

	•	
ŧΩ	nicc	
LU	DILO	

✓ Jul 2024 ECAL + magnet

Nov 2024 I & I

Dec 2024/Jan 2025 GRAIN

Mar 2025 Tracker

Review of TDR chapter draft

reviewer

Jan 2025 SAND consortium

Feb 2025 DUNE collaboration

Mar 2025 LBNC

Many many rules/instructions in the writing of DUNE documents:

https://github.com/DUNE/document-guidance/releases/

Latex structure

https://ctan.mirror.garr.it/mirrors/ctan/macros/latex/contrib/siunitx/siunitx.pdf

units

https://dune.bnl.gov/docs/technical-proposal/dune-words.pdf

DUNE words

https://ctan.mirror.garr.it/mirrors/ctan/macros/latex/contrib/glossaries/glossaries-user.pdf

glossary

An almost synthetic guidance (49 pages)

https://dune.bnl.gov/docs/guidance.pdf

Help by Anne Heavey, scientific editor at FNAL

