New solar neutrino analyses with argon detectors

Dan Pershey – Florida State University

Oct 17, 2024

How current solar neutrino analysis works

Electron scatter signal isolated by spallation cuts and direction

Difficult to understand oscillations that depend on $\rm E_{v}$ with $\rm E_{e}$ spectra

ES channel also sensitive to all neutrino flavors, but with different weights, also smears out characteristics of v_e flux

Desire for next generation experiments to precisely understand day-night diffs and probe the solar upturn

Finding the solar upturn

The power of argon

Large CC xsec – good energy resolution + day-night asymmetry

TPC technology – good tracking and calorimetry

□High light yield – scintillation gives additional analysis stream

• Q+L -> improved energy reconstruction + quenching ID (α rejection)

Problem: intrinsic argon backgrounds

- Environmental radioactive noble nuclei contaminate liquid argon
- Most decays are not signal-like and can be rejected
 - Charge quenching rejects α 's
 - Low-Q value β's below energy ROI BiPo's
 - Fiducialization removes plate-out
- Perform light-only (almost) analysis
 - Poisson energy smearing: LY = 180 PE/MeV
 - Assume 1 m vertex resolution
 - α rejection uses charge quenching

Source	Nucleus	Rejection Activity		
³⁹ Ar	³⁹ Ar	$Q_{\beta} = 0.565 \text{ MeV}$	—	
⁴² Ar	⁴² Ar	$Q_{eta} = 0.600 \; { m MeV}$	_	
⁴² Ar	⁴² K	– 0.040 mBq		
⁸⁵ Kr	85 Kr	$Q_{\beta} = 0.687 \text{ MeV}$ –		
²²² Rn	²²² Rn	α	_	
²²² Rn	²¹⁸ Po	α	_	
²²² Rn	²¹⁴ Pb	_	0.35 mBq/kg	
²²² Rn	²¹⁴ Bi	BiPo	_	
²²² Rn	²¹⁴ Po	α	_	
²²² Rn	²¹⁰ Tl	_	73 nBq/kg	
²²² Rn	^{210}Pb	plate-out	_	
²²² Rn	²¹⁰ Bi	plate-out	_	
²²² Rn	²¹⁰ Po	plate-out	_	
²²⁰ Rn	220 Rn	α	_	
²²⁰ Rn	²¹⁶ Po	α	_	
²²⁰ Rn	²¹² Pb	$Q_{\beta} = 0.569 \text{ MeV}$	_	
²²⁰ Rn	²¹² Bi	BiPo	_	
²²⁰ Rn	²¹² Po	α	_	
²²⁰ Rn	208 Tl	α	0.056 mBq/kg	

Solution: the golden channel

- Story as old as the first detection of the neutrino – find a signal channel with time-correlated energy deposits
 - Explore forest of deexcitation gammas there is one with long, 480 ns lifetime
 - Decay happens in 65% of Fermi transitions and 25% of total solar interactions
- Golden channel prompt+delayed scintillation time profile
 - $E_1 = E_v 2.73 \text{ MeV}$
 - E₂ = 1.65 MeV

FIG. 1. Level scheme of 40 Ar- 40 K relevant to v_e capture in argon.

Selected background rate for DUNE

O(1e12 bkg) / 100 kt-yrs in prompt ROI (dominated by ²⁰⁸Tl decay)
 O(3e-8) bkg rejection factor after requiring delayed coincidence

Golden channel analysis

□Select only night-time events to mitigate complication of wiggles

- 2370/yr signal + 355/yr bkg
- Upturn visible down to 6 MeV + bkg free above 8 MeV
- □Shape-only fit: upturn visible at 4σ and Δm^2_{21} measured at 15%

□Allows night-time studies to complement -> extra physics with solar v

Testing the MSW effect

- Long baseline results rely on matter potential to break degeneracy
- Matter effects calculated with MSW model is it valid?
- NOvA and T2K may now point to non-standard behavior (stats low!)

Testing MSW with twilight neutrinos

MSW predicts flavor oscillations in matter potential – *constantly varying baseline* with solar neutrinos can test

Review of mixing nomenclature in the sun

Neutrinos arrive at Earth as a mix of mass eigenstates

•
$$\approx \cos \theta_{13} \left(\sqrt{\frac{1 + \cos 2\theta_{\text{mat}}}{2}} | v_1 \rangle + \sqrt{\frac{1 - \cos 2\theta_{\text{mat}}}{2}} | v_2 \rangle \right) + \sin \theta_{13} | v_3 \rangle$$

•
$$\cos 2\theta_{\text{mat}} = \frac{K \cos 2\theta_{12} - V_{CC}}{\sqrt{(K \cos 2\theta_{12} - V_{CC})^2 + (K \sin 2\theta_{12})^2}} \left[K \equiv \frac{\Delta m_{21}^2}{2E_v} \right]$$

•
$$D_{3\nu} = \int \cos(2\theta_{\text{mat}}(r_{\text{prod}})) P(r_{\text{prod}}) dr_{\text{prod}}$$

Blennow, Ohlsson, Snellman, PRD 69 073006 (2004)

 $D_{3v} = -1$ for $|v_e\rangle_{mat} = |v_2\rangle$ never fully realized Observed signals in experiments depend on the local electron density at production

- □In high-energy limit, MSW resonance completely activated, solar neutrinos arrive as $\approx |v_2\rangle$
- □As they enter Earth, matter effects change flavor content of $|v_2\rangle$ which induces oscillations the wiggles
 - Night-time excess of event rate observed

$$\Box P_{ee}^{n} - P_{ee}^{d} \cong \frac{V_{CC}E_{\nu}}{\Delta m_{21}^{2}} \cos^{6}\theta_{13} D_{3\nu} \sin^{2}2\theta_{12} \sin^{2}\frac{\Delta m_{21}^{2}L_{\nu}}{4E_{\nu}}$$

- □In high-energy limit, MSW resonance completely activated, solar neutrinos arrive as $\approx |v_2\rangle$
- □As they enter Earth, matter effects change flavor content of $|v_2\rangle$ which induces oscillations the wiggles
 - Night-time excess of event rate observed

$$\Box P_{ee}^{n} - P_{ee}^{d} \cong \frac{V_{CC}E_{\nu}}{\Delta m_{21}^{2}} \cos^{6}\theta_{13} D_{3\nu} \sin^{2}2\theta_{12} \sin^{2}\frac{\Delta m_{21}^{2}L}{4E_{\nu}}$$

$$V_{CC} = \sqrt{2}G_{F}N_{e}$$
Matter-induced mixing $\sin^{2}2\theta_{m}$
Typical oscillation kinematic factor

□In high-energy limit, MSW resonance completely activated, solar neutrinos arrive as $\approx |v_2\rangle$

- □ As they enter Earth, matter effects change flavor content of $|v_2\rangle$ which induces oscillations – the wiggles Night time evenes of event rate changed.
 - Night-time excess of event rate observed

$$\Box P_{ee}^n - P_{ee}^d \cong \frac{V_{CC}E_{\nu}}{\Delta m_{21}^2} \cos^6 \theta_{13} D_{3\nu} \sin^2 2\theta_{12} \sin \frac{\Delta m_{21}^2 L}{4E_{\nu}}$$
 only matters in matter-
dominated limit
$$V_{CC} = \sqrt{2}G_F N_e$$
 Matter-induced mixing $\sin^2 2\theta_m$ Typical oscillation kinematic factor

depends on matter densi

- □In high-energy limit, MSW resonance completely activated, solar neutrinos arrive as $\approx |v_2\rangle$
- □As they enter Earth, matter effects change flavor content of $|v_2\rangle$ which induces oscillations the wiggles
 - Night-time excess of event rate observed

$$\Box P_{ee}^n - P_{ee}^d \cong \frac{V_{CC}E_{\nu}}{\Delta m_{21}^2} \cos^6 \theta_{13} D_{3\nu} \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E_{\nu}}$$

Technically, mass splitting depends on matter densition only matters in matterdominated limit

 $V_{CC} = \sqrt{2}G_F N_e$ Matter-induced mixing sin² 2 θ_m

Typical oscillation kinematic factor

Goal – determine if DUNE solar neutrinos give a precision test of MSW model of oscillation frequency and amplitude

Limited by E res, short-baseline "twilight" neutrinos carry sensitivity

Comparison to long-baseline

Night excess scale
$$A = \frac{V_{CC}E_{\nu}}{\Delta m_{ij}^2}$$

 $V_{CC} \approx 1.2e-13 \text{ eV} @ 3 \text{ gm/cm}^3$

	V _{CC}	$E_{\mathbf{v}}$	Δm^2_{ij}	Α
⁸ B Solar	1.3e-13 eV	14 MeV	7.5e-5 eV ²	0.027
DUNE LBL	1.2e-13 eV	2.8 GeV	2.4e-3 eV ²	0.14
T2(H)K LBL	1.2e-13 eV	0.6 GeV	2.4e-3 eV ²	0.030

Solar neutrinos have approximately same degree of matter asymmetry as T2(H)K for long-baseline

Regions that support fusion complicates picture

□ Distribution of production densities → distribution $|v_2\rangle$ of content → distribution of critical E_v for upturn

This is a precision oscillation study, incorporate this effect

0.02

Simulating a solar neutrino sample

- □Focus on ⁸B neutrinos
- 1. Pull electron density form spectrum radial distribution
- 2. Pull random nadir angle from expected yearly distribution
- 3. Pull random neutrino energy uniformly over flux energy range
- 4. Calculate $P_{ee}(r_{prod}, \cos \eta, E_{\nu})$
- 5. Apply event weight = $P_{ee}(r_{prod}, \cos \eta, E_{\nu})$
- 6. Continue until spectrum integral is:
 - 20.6k events / 17 kt-yrs x (10 x 17 kt-yrs) Sergio's selected event rate

Detector resolution assumptions

- Energy resolution matters! Use phase II detector response from Wei Shi's study
 - 75 keV for Q threshold
 - 180 PE/MeV LY
- Looking at phase I detector res from Sergio is on the docket

Predicting twilight neutrinos

Expected observed solar neutrino rate (5 – 15 MeV) as a function of baseline through Earth

•
$$P_{ee}^n - P_{ee}^d \cong C \sin^2 \frac{\Delta m_{21}^2 L}{4E_v}$$

Predicting twilight neutrinos

Expected observed solar neutrino rate (5 – 15 MeV) as a function of baseline through Earth

•
$$P_{ee}^n - P_{ee}^d \cong C \sin^2 \frac{\Delta m_{21}^2 L}{4E_{\nu}}$$

□For L/E < ~ -200 km/MeV, energy resolution smear out oscillation behavior even for phase II resolution

How well can we determine amplitude / frequency of oscillation for L/E<200

Mock data – 10 yrs of phase II

Correct for nadir distribution shape, fit to polynomial: $p_0 + p_2 x^2 + p_4 x^4$ and apply to baseline prediction for night

Normalize by day-time prediction to determine the night excess

□Select L/E < 200 km/MeV

With E ≈ 10 MeV → L < 2000 km
 → < 40 min after sunset / before dawn

Six oscillation maxima are observed

First attempt at oscillation contours

- 10 yrs of phase II solar neutrino data
- \Box Great 1 σ measurement of Δm^2
 - Can test adjustment due to matter effects
- Scale factor less-well determined, can be improved with late night neutrinos

Spectra in energy bins

Sensitivity in energy bins – MSW scale

Sensitivity in energy bins – frequency

Impressions and next steps

□New physics available if we have 1 module with excellent resolution

• Phase II owns this physics!

□<u>Golden analysis channel</u> allows analysis of the solar upturn giving independent measurement of Δm^2

- Good resolution tests energy dependence of upturn
- **Twilight neutrinos also** Δm^2 (1% at 1σ) maybe test departure of Δm^2 from vacuum value?
 - With JUNO, multiple probes overconstrain the solar neutrino picture allowing new physics tests
- Sensitivity to MSW scale less good (15% at 1σ) resolution-averaged neutrinos from late at night can also measure this parameter

□Very basic studies – need more study with realistic detector models

