ND-GAr Acceptance Studies

Naseem Khan ND-GAr Meeting 8th October 2024

Motivation

- Chris Marshall's talk
 - FD has 4π acceptance, so ND needs to measure neutrino interactions over the full 4π to match the FD
 - Need to ensure the full phase space has good acceptance so that a reliable correction can be applied
 - However, some regions have very small, or zero, acceptance with ND-LAr + TMS.
 - Events are classed as "accepted" in ND-LAr+TMS if:
 - Hadrons are contained in ND-LAr
 - Muon stops in ND-LAr active volume or TMS instrumented region
 - Some events will be accepted if the vertex is in some region of ND-LAr but the same event can be rejected if it happens elsewhere
 - However, some events are not accepted no matter where the vertex is

Motivation

- Chris Marshall's talk
- Study by KiYoung Jung
 - Uses a full Geant4 Simulation of ND-LAr+TMS
 - Region in Q3 vs Q0 phase space that has very low acceptance
 - This is a "blind spot" for the ND

Looking at acceptance vs. q0/q3

Motivation

- Chris Marshall's talk
- Study by KiYoung Jung
 - Uses a full Geant4 Simulation of ND-LAr+TMS
 - Region in Q3 vs Q0 phase space that has very low acceptance
 - This is a "blind spot" for the ND
- ND-GAr will have full 4π coverage

Looking at acceptance vs. q0/q3

ND-GAr Acceptance Studies

- We want to know what requirements we can put on the design of ND-GAr in order to have a good acceptance in this region that ND-LAr will miss
- We will use the same assumptions as ND-LAr+TMS studies so it is a fair comparison
 - Use the Geant4 Simulation of ND-GAr with GENIE events
 - Using the 100k event sample
 - Using the G18 tune of GENIE

ND-GAr Acceptance Studies

- Define Acceptance as all tracks are either:
 - Contained
 - Better momentum resolution than 5% for any charged particles leaving the TPC
 - Assume Neutral Pions/Photons will be well reco'd in the ECAL
 - Ignore neutrons (as ND-LAr study has ignored these)
- Not accounting for any misreconstruction at the moment

Momentum Resolution Calculation

- For particles that do not stop in the fiducial volume, we can determine their momentum from track curvature
- Track must be long enough and curved enough to measure momentum with a 5% uncertainty
- Assuming a helix with fixed radius of curvature

$$\left(\frac{\sigma_p}{p}\right)^2 = \left(\frac{\sigma_{p_T}}{p_T}\right)^2 + \left(\tan(\lambda)\sigma_\lambda\right)^2$$
R. Kogle

- p is Total Momentum
- pT is Transverse Momentum
- λ is the dip angle of the helix

Momentum Resolution Calculation

• Transverse momentum resolution estimated from the Gluckstern Formula

$$\frac{\sigma_{p_T}}{p_T} \approx \sqrt{\frac{720}{N+4}} \left(\frac{\sigma_y p_T}{0.3BL^2}\right)$$
 C. Young

- N is the number of pixels a track goes through.
 - This is estimated using a pixel grid of 6mm x 6mm pixels.
- B is the magnetic field.
 - Set to 0.5 T, but will be varied and studied
- L is the length of the track in the transverse plane
 - Estimate the track as a circle in the transverse plane
- σy is the spatial resolution in the transverse plane (pixel spacing)

Momentum Resolution Calculation

• Dip Angle Resolution Estimation

- Lx is the track length in the X-direction (direction of the B-field)
 - This gives: $\tan(\lambda)\sigma_{\lambda} = \tan^{3}(\lambda)\left(\frac{\sigma_{x}}{L_{x}} \frac{\sigma_{p_{T}}}{p_{T}}\right)$
- We take σx to be the spatial resolution in the x-direction (assuming a drift velocity of ~3.011 cm/μs and a Sampling frequency of 20 MHz)

Preliminary Plots

Accepted Events

Preliminary Plots

Accepted Events

Preliminary Plots - Acceptance

Conclusions

- These early studies are aiming to determine the impact ND-GAr will have on the ND acceptance correction.
- Want to reach a good acceptance in the low acceptance regions of ND-LAr
- Can then vary fiducial volume, pixel spacing, B-field etc. and see what we **require** for ND-GAr to see enough events in this region of phase space
 - Written in an easily configurable way
- As this still uses 100k events, we should confirm if the plots show the same thing with a larger sample
- We have tried to keep the assumptions similar to those used in the ND-LAr+TMS study so we can make fair comparisons
 - Plan to show these studies to wider audiences e.g. LBL, ND-Sim/Reco for input

