ARCADIA FNAL meeting

17-10-24

S.Ciarlantini, C. Pantouvakis, M. Rignanese, A. Zingaretti INFN Sezione di Padova

TB analysis: status

What's new

Efficiency

- Implementation on spatial check for efficiency calculation
- Study of efficiency as function of time window used for coincidences
- Study of efficiency as function of fiducial distance of hit on det1 respect to expected hit
- Study of efficiency vs VCASN

Efficiency

New algorithm

- 1. With tracks from previous tracking algorithm (one cluster on all planes), perform alignment and tilt correction
- 2. Cut events out of sensor area [0,512] *
- 3. Select events in time coincidence with time window (tw) between external planes 0,2
- 4. Look for clusters on plane 1 in same time window (tw) applying spatial cut:

abs (cluster center - expected hit) < d [pixel]

(squared fiducial area around the expected hit on det1)

NOTE: If there is more than one cluster on plane 1, select the closest to the expected hit.

278 276 274 272 hit pixels expected hit clz center det 270 260 262 264 266 268 270 272 274

Example for

280 -

5. Compute efficiency as

complete coincidences 0,1,2

 $efficiency = \frac{1}{\# \ complete \ coincidences \ 0,1,2 + \# \ incomplete \ coincidences \ 0,2}$

Part 1 of the analysis: Find the right time window to make coincidences Study of efficiency as function of different tw and spatial thresholds on det1 hits

Efficiency: study of efficiency as function of spatial threshold on det1 hit and coincidences tw tracking with different tw, varying pixel distance for cut on DUT

Efficiency: study of efficiency as function of spatial threshold on det1 hit and coincidences tw Outliers on row and col for different tw and spatial threshold

- Outliers grows with spatial threshold → if spatial thr. increases we include events with big residuals and so residual histos tails grow.
- Outliers grows as tw decreases \rightarrow if the tw is too short coincidences could be split

From analysis of part 1: TW = 25, TW = 41 and TW = -10/+25 are very similar in terms of efficiency and outliers%, much better than TW = 10. For now we use TW = 25 (~ 5 us) Part 2 of the analysis: Find the right spatial threshold using coincidences with tw = 25Study of efficiency as function of spatial threshold of det1 hit looking at:

- Outliers
- Resolutions

TW = 25

Efficiency: Study of spatial threshold on det1 hit @ TW = 25 resolution vs spatial cut

outliers vs spatial cut

with cut = 3 pixels \rightarrow eff = 99,16% \rightarrow outliers = 2.26% row - 2.17% col

spatial threshold analysed d = 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 40, 50, 60, 70, 80, 90 100, 200, 300, 400, 500

Efficiency: Study of spatial threshold on det1 hit @ TW = 25

<u>efficiency + resolution Row vs spatial cut</u> <u>efficiency + resolution Col vs spatial cut</u> spatial threshold analysed d = 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 40, 50, 60, 70, 80, 90 100, 200, 300, 400, 500

with cut = 3 pixels \rightarrow eff = 99,16%

 \rightarrow outliers = 2.26% row - 2.17% col \rightarrow resolution = 4.630 um row - 4.731 um col

Residual comparison: with and without spatial cut

9

Study on efficiency parameters: tw - spatial cut Recap

d = 3 means considering a matrix 7x7 around expected hit

	TW = 10 , d = 3	TW = 25 , d = 3	TW = 41, d = 3	TW = -10/+25, d = 3
efficiency	98.30%	99.16%	99.17%	99.17%
outliers row	2.33%	2.26%	2.26%	2.25%
outliers col	2.28%	2.17%	2.17%	2.17%
sigma row (resolution) [um]	4.625	4.630	4.630	4.630
sigma col (resolution) [um]	4.707	4.731	4.732	4.731

TW = time window in which look for coincidences (timestamps) d = spatial cut on det1 hits (pixel)

Study on efficiency parameters: tw - spatial cut Recap

d = 5 means considering a matrix 11x11 around expected hit

	TW = 10 , d = 5	TW = 25 , d = 5	TW = 41, d = 5	TW = -10/+25, d = 5
efficiency	98.62%	99.42%	99.43%	99.42%
outliers row	2.50%	2.36%	2.36%	2.36%
outliers col	2.45%	2.28%	2.28%	2.28%
sigma row (resolution) [um]	4.626	4.630	4.631	4.630
sigma col (resolution) [um]	4.707	4.732	4.733	4.732

TW = time window in which look for coincidences (timestamps) d = spatial cut on det1 hits (pixel)

Efficiency: Study of spatial threshold on det1 hit @ TW = 25 Efficiency with and without borders hits

spatial threshold analysed d = 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500

d = 3

no cut \rightarrow efficiency = 0.9916 cut [5,507] \rightarrow efficiency = 0.9922 cut [10,502] \rightarrow efficiency = 0.9926

d = 5 no cut \rightarrow efficiency = 0.9942 cut [5,507] \rightarrow efficiency = 0.9947 cut [10,502] \rightarrow efficiency = 0.9951

From analysis of part 1: TW = 25, TW = 41 and TW = -10/+25 are very similar in terms of efficiency and outliers%, much better than TW = 10. For now we use TW = $25 (\sim 5 \text{ us})$

From analysis of part 2: Still considering d = 3 or d = 5 as best cut

Efficiency vs threshold (VCASN) scan on det1 @ TW = 25 + d = 5

d = spatial cut on det1 hits (pixel)

d = 5 \rightarrow 11x11 matrix d = 3 \rightarrow 7x7 matrix

> Still investigating on efficiency vs VCASN trend

BACKUP

Cut coincidences with expected position on det1 outside confidential area

- \rightarrow step 0: align det2 using results from correlation plot (showed in previous presentation)
- \rightarrow step 1: 3D line using position on external planes
- \rightarrow step 2: make residuals and use mean of gaussian fit to align det1 (1st time)
- \rightarrow step 3: plot resRow vs Col and resCol vs Ros to extract tilt angle
- \rightarrow step 4: correct for tilting angle
- \rightarrow step 5: make residuals and use mean of gaussian fit to align det1 (2nd time)
- \rightarrow step 6: cut events out of sensor area [0,512] *
- \rightarrow step 7: find coincidences within spatial cut on det1
- \rightarrow step 8: calculate efficiency

*after alignment some rowCenterAlign or colCenterAlign values are shifted outside the sensor area

Study on efficiency parameters: tw - spatial cut Recap

Long default run VCASN = 5

pixel distance	tw = 10	tw = 25	tw = 41	tw = -10/+25
d = 3	eff = 0.9830	eff = 0.9916	eff = 0.9917	eff = 0.9917
	outliers row = 2.33%	outliers row = 2.26%	outliers row = 2.26%	outliers row = 2.25%
	outliers col = 2.28%	outliers col = 2.17%	outliers col = 2.17%	outliers col = 2.17%
d = 5	eff = 0.9862	eff = 0.9942	eff = 0.9943	eff = 0.9942
	outliers row = 2.50%	outliers row = 2.36%	outliers row = 2.36%	outliers row = 2.36%
	outliers col = 2.45%	outliers col = 2.28%	outliers col = 2.28%	outliers col = 2.28%
d = 20	eff = 0.9897	eff = 0.9958	eff = 0.9957	eff = 0.9957
	outliers row = 2.77%	outliers row = 2.49%	outliers row = 2.49%	outliers row = 2.48%
	outliers col = 2.72%	outliers col = 2.41%	outliers col = 2.40%	outliers col = 2.40%
d = 50	eff = 0.9915	eff = 0.9964	eff = 0.9963	eff = 0.9963
	outliers row = 2.94%	outliers row = 2.55%	outliers row = 2.54%	outliers row = 2.54%
	outliers col = 2.88%	outliers col = 2.46%	outliers col = 2.46%	outliers col = 2.46%
d = 100	eff = 0.9934	eff = 0.9969	eff = 0.9969	eff = 0.9968
	outliers row = 3.12%	outliers row = 2.60%	outliers row = 2.59%	outliers row = 2.59%
	outliers col = 3.05%	outliers col = 2.52%	outliers col = 2.51%	outliers col = 2.50%