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Why We Measure Cross Sections
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• Oscillation experiments use neutrino interaction rates to 
infer a neutrino flux change, which requires a precise 
understanding of how neutrino interactions depend on 
true neutrino energy


• DUNE and Hyper-K will need significantly better 
modeling than NOvA and T2K have needed so far


• Also, many BSM searches have neutrino backgrounds 
which must be correctly modeled


• We don’t have a solid theoretical understanding of every 
interaction process, since O(GeV) neutrino interactions 
involve non-perturbative many-body QCD calculations


• In the absence of a full rigorous calculation of all 
processes, we must measure these interactions, using 
these measurements to improve our empirical nuclear 
models

https://www.jlab.org/news/releases/electrons-set-stage-neutrino-experiments-0

https://www.jlab.org/news/releases/electrons-set-stage-neutrino-experiments-0


How We Measure Cross Sections
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Equation relating cross section to 
measured counts
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on target
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targets
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Selection 
efficiency Background

M(Trec) = POT ⋅ T ⋅ ∫ ϕ (Eν) ⋅ σ (Eν, Ttrue) ⋅ D (Ttrue → Trec) ⋅ ε (Eν, Ttrue) ⋅ dEν + B (Trec)
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How We Measure Cross Sections

4

Mi = Ri,j ⋅ Sj + Bi

Equation relating cross section to 
measured counts

Writing it as a matrix equation

:  bin index

:  bin index

i Treco
j Ttrue
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M(Trec) = POT ⋅ T ⋅ ∫ ϕ (Eν) ⋅ σ (Eν, Ttrue) ⋅ D (Ttrue → Trec) ⋅ ε (Eν, Ttrue) ⋅ dEν + B (Trec)
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How We Measure Cross Sections
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Mi = Ri,j ⋅ Sj + Bi

Sj = R−1
i,j ⋅ (Mi − Bi)

Equation relating cross section to 
measured counts

Writing it as a matrix equation

Solving the equation by inverting the total 
response matrix, usually with some 

regularization to ensure a smooth result

:  bin index

:  bin index

i Treco
j Ttrue

Protons 
on target

Number of 
targets

Beam 
flux

Cross 
section

Detector 
response

Selection 
efficiency Background

M(Trec) = POT ⋅ T ⋅ ∫ ϕ (Eν) ⋅ σ (Eν, Ttrue) ⋅ D (Ttrue → Trec) ⋅ ε (Eν, Ttrue) ⋅ dEν + B (Trec)
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Model Dependence In Cross Section Extractions

But these quantities depend on an 
assumed cross section model!

We directly solve for this 
quantity, so we don’t need to 

assume any model for it.

Protons 
on target

Number of 
targets

Beam 
flux

Cross 
section

Detector 
response

Selection 
efficiency Background

M(Trec) = POT ⋅ T ⋅ ∫ ϕ (Eν) ⋅ σ (Eν, Ttrue) ⋅ D (Ttrue → Trec) ⋅ ε (Eν, Ttrue) ⋅ dEν + B (Trec)

• As an example, say that our signal is inclusive CC events, and we are 
measuring the kinetic energy of the muon, 

νμ
Eμ

Lee Hagaman on behalf of the MicroBooNE Collaboration



M(Eμ,rec) = POT ⋅ T ⋅ ∫ ϕ (Eν) ⋅ σ(Eν, Eμ,true) ⋅ D(Eμ,true → Eμ,rec) ⋅ ε(Eν, Eμ,true) ⋅ dEν + B(Eμ,rec)
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• The detector response  could depend on the cross section as 
a function of muon angle


• Forward muons may be contained in the detector more often, leading to better 
energy resolution

D(Eμ,true → Eμ,rec)

Model Dependence In Cross Section Extractions, Example: CC νμ Eμ

Lee Hagaman on behalf of the MicroBooNE Collaboration



M(Eμ,rec) = POT ⋅ T ⋅ ∫ ϕ (Eν) ⋅ σ(Eν, Eμ,true) ⋅ D(Eμ,true → Eμ,rec) ⋅ ε(Eν, Eμ,true) ⋅ dEν + B(Eμ,rec)
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• The selection efficiency  could depend on the cross section as a 
function of proton energy and multiplicity


• CC events with observed protons may be easier to distinguish from cosmic 
muons, leading to higher efficiencies

ε(Eν, Ttrue)

νμ

Model Dependence In Cross Section Extractions, Example: CC νμ Eμ
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M(Eμ,rec) = POT ⋅ T ⋅ ∫ ϕ (Eν) ⋅ σ(Eν, Eμ,true) ⋅ D(Eμ,true → Eμ,rec) ⋅ ε(Eν, Eμ,true) ⋅ dEν + B(Eμ,rec)
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• The background  could depend on the cross section for NC 1  production


• NC 1  events can mimic the CC topology, so a larger cross section could lead 
to a larger background

B(Eμ,rec) π−

π− νμ

Model Dependence In Cross Section Extractions, Example: CC νμ Eμ

Lee Hagaman on behalf of the MicroBooNE Collaboration
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• We use systematic uncertainties to hopefully make these model 
dependent quantities reflect reality


• But if our models aren’t accurate enough and our systematic 
uncertainties aren’t big enough, this could lead to the extraction of 
biased cross section results

M(Trec) = POT ⋅ T ⋅ ∫ ϕ (Eν) ⋅ σ (Eν, Ttrue) ⋅ D (Ttrue → Trec) ⋅ ε (Eν, Ttrue) ⋅ dEν + B (Trec)

Model Dependence In Cross Section Extractions

Lee Hagaman on behalf of the MicroBooNE Collaboration



 DependenceEν

• One potential source of model dependence is difficulty in modeling cross 
sections as a function of 


•  is not directly observable at O(GeV) energies, since there will be energy 
that we can’t construct in the hadronic system,  (for example, exiting 
neutrons)


• When thinking about  dependence, we have to think about flux 
uncertainties 

Eν

Eν
Einvis

had

Eν
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Integrating Over Beam Flux

• In a cross section measurement, we integrate over the neutrino flux


• (Unless we measuring an -dependent cross section, more on that later)


• When calculating a flux averaged cross section, you should integrate over the real neutrino 
flux 


• But we only know , the central value flux prediction from our modeling


• How can we deal with this difference?

Eν

ϕtrue(Eν)

ϕnominal(Eν)
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M(Trec) = POT ⋅ T ⋅ ∫ ϕ (Eν) ⋅ σ (Eν, Ttrue) ⋅ D (Ttrue → Trec) ⋅ ε (Eν, Ttrue) ⋅ dEν + B (Trec)
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σ =
N

TΦ
: integrated flux, Φ Φ = ∫ ϕ(Eν) dEν

: number of target nucleiT

: number of signal eventsN =
Nmeasured − Nbackground

ε

Lee Hagaman on behalf of the MicroBooNE Collaboration

Where Do We Put Flux Uncertainties?

Lukas Koch and Stephen Dolan 
Phys. Rev. D 102, 113012 (2020)

https://doi.org/10.1103/PhysRevD.102.113012


“Real Flux” Extraction
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“Nominal Flux” Extraction
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• Place flux uncertainties on  


• Considers the difference between  and 


•  is calculated at the real beam flux, even though that’s 
unknown


• Minimal flux uncertainties on 


•  and  are still affected by flux uncertainties

Φ

Φnominal Φreal

N

N

Nbackground ε

• Place flux uncertainties on  to account for 
the different expected signal between the real 
flux and the nominal flux 


• Considers the difference between 
 and 


• No uncertainties on 

N

ϕnominal(Eν) ϕreal(Eν)

Φ

Lukas Koch and Stephen Dolan 
Phys. Rev. D 102, 113012 (2020)

σ =
N

TΦ
Include flux 

uncertainties σ =
N

TΦ
Include flux 

uncertainties

https://doi.org/10.1103/PhysRevD.102.113012


“Real Flux” Extraction
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“Nominal Flux” Extraction
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• Model dependence:


• We don’t need to trust modeling of how the 
measured counts depend of flux variations, 




• We do need to trust modeling of how the 
efficiency and background changes for different 
fluxes, 

Δϕreal(Eν) → ΔNmeasured

Δϕreal(Eν) → Δε, ΔNbackground

• Model dependence:


• Need to trust modeling of how every part of the 
signal measurement depends of flux variations, 
Δϕreal(Eν) → ΔNmeasured, ε, ΔNbackground

Lukas Koch and Stephen Dolan 
Phys. Rev. D 102, 113012 (2020)

σ =
N

TΦ
Include flux 

uncertainties σ =
N

TΦ
Include flux 

uncertainties

https://doi.org/10.1103/PhysRevD.102.113012


“Real Flux” Extraction
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“Nominal Flux” Extraction
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• Generator comparisons:


• It can be difficult to compare a real-
flux-averaged cross section with 
nominal-flux-averaged generator 
predictions

• Generator comparisons:


• We have a measurement with a 
well-defined flux, so it is easy to 
compare with generator predictions

Lukas Koch and Stephen Dolan 
Phys. Rev. D 102, 113012 (2020)

σ =
N

TΦ
Include flux 

uncertainties σ =
N

TΦ
Include flux 

uncertainties

https://doi.org/10.1103/PhysRevD.102.113012


Toy Example, Illustrating “Real Flux” Challenges
• Toy example: MicroBooNE CC inclusive measurement of , with the same 

binning as Phys. Rev. Lett. 128, 151801 (2022)


• To focus on flux uncertainties, we assume:


• Perfect energy resolution


• 100% efficiency


• Zero background


• No cross section uncertainties, the MicroBooNE tune GENIE model is exactly correct


• We consider many flux variations, sampled from the BNB flux model at MicroBooNE


• For each variation, we calculate  values by comparing our extracted 11 bin 
differential cross section with the true cross section

νμ dσ/dEμ

χ2

17Lee Hagaman on behalf of the MicroBooNE Collaboration

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.151801


• Three methods:


• “Incorrect”: we don’t include any flux uncertainties on the 
nominal-flux-averaged true cross section


• Comparing a “real flux” cross section with a “nominal 
flux” prediction, leads to very large  values


• “Flawed”: we include flux uncertainties on the nominal-
flux-averaged true cross section, but we don’t consider 
correlations between this flux uncertainty and the 
uncertainty on the integrated flux uncertainty  used in 
the extraction


• Leads to a double-counting of flux uncertainty, shifting 
the  values away from a  probability distribution


• “Correct”: we include flux uncertainties on the nominal-
flux-averaged true cross section and their correlations 
with the extracted integrated flux uncertainty 

χ2

Φ

χ2 χ2

Φ
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Toy Example, Illustrating “Real Flux” Challenges

arXiv:2411.03280

https://arxiv.org/abs/2411.03280


• We also compare these  values with a 
“nominal flux” extracted  value, which 
doesn’t need any flux uncertainties on the 
true cross section


• The “correct method” and “nominal flux 
method” are identical 


• The “incorrect method” always 
dramatically overestimates 


• The “flawed method” most often 
overestimates , but can underestimate 

 as well

χ2

χ2

χ2

χ2

χ2
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Toy Example, Illustrating “Real Flux” Challenges

arXiv:2411.03280

https://arxiv.org/abs/2411.03280


• So, to compare a “real flux” measurement with a generator prediction, 
we should consider how the extracted cross section is correlated with 
flux spectrum uncertainty variations


• This could potentially be related to challenges encountered in tuning 
generator parameters to cross section measurements


• “Peelle’s Pertinent Puzzle”: Tuning generators to  
cross section measurements can result in large  values  
and a best fit that’s visibly far from the data points

χ2

20Lee Hagaman on behalf of the MicroBooNE Collaboration

Toy Example, Illustrating “Real Flux” Challenges

University of Pittsburgh 
Generator Studies Workshop 

Phys. Rev. D 105, 072001 (2022) 
Phys. Rev. C 102, 015502 (2020) 
Phys. Rev. D 106, 112001 (2022)

https://indico.fnal.gov/event/64511/
https://indico.fnal.gov/event/64511/
https://doi.org/10.1103/PhysRevD.105.072001
https://doi.org/10.1103/PhysRevC.102.015502
https://doi.org/10.1103/PhysRevD.106.112001


Nominal Flux Challenge

• Because of this difficulty in comparing with generator predictions, 
MicroBooNE has used the “nominal flux” approach for recent cross 
sections


• In order to use the “nominal flux” approach, we have to trust modeling 
of  to some extent


• This is also true in the “real flux” approach to a lesser extent


• This further increases the importance of modeling  
sufficiently well before extracting

σ(Eν, Trec)

σ(Eν, Trec)

21Lee Hagaman on behalf of the MicroBooNE Collaboration



• GENIE v3 for detector response, 
background, efficiency, and a 
GENIE v3 fake data set 


• Will always get exactly the correct 
cross section result


• Not very interesting, usually only 
done to test for technical bugs

22Lee Hagaman on behalf of the MicroBooNE Collaboration Made up points and curves, just for illustration!

Unfolded Eμ

dσ
/d

E μ

GENIE v3
NuWro

GENIE v3 Fake Data

Fake-Data Closure Testing



• GENIE v3 for modeling detector response, background, efficiency, and a 
NuWro fake data set 


• The extraction will differ from the truth if NuWro and GENIE give significantly 
different predictions for the detector response, background, and efficiency


• If this difference is within uncertainties:


• We have validated that our extraction doesn’t seem too model 
dependent, safe to extract the cross section


• If this difference is outside uncertainties:


• We have identified significant model dependence, and we should add 
uncertainties to reduce this before extracting


• Example: MicroBooNE  TKI cross sections, Phys. Rev. D 108, 
053002 (2023). After a NuWro fake data test failed, we added additional 
cross section uncertainty according to the difference between GENIE 
and NuWro.

1μ1p

23

Fake-Data Closure Testing

Lee Hagaman on behalf of the MicroBooNE Collaboration Made up points and curves, just for illustration!

Unfolded Eμ

dσ
/d

E μ

GENIE v3
NuWro

NuWro Fake Data

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.053002
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.053002
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• To summarize:


• Fake-Data closure tests try to ensure that 
in the relevant phase space affecting the 
detector response, efficiency, and 
background, the uncertainties of the model 
cover other cross section models

GENIE v3
NuWro
GiBUU
NEUT

Phase Space Of All Models
(Made up for illustration, very high dimensional in reality)

• This one error bar isn’t literal, in reality 
we have to do statistical tests to get 
some idea of whether two models are 
within uncertainties in the relevant 
phase space

Fake-Data Closure Testing
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• This procedure has some limitations


• 1: What if the spread of models included in fake data tests 
do not describe the real cross section? 


• 2: What if the spread of models included in fake data tests 
is very large, and makes you expand to very large 
uncertainties, even when your original model is good?


• 3: How do you know when to stop? There are many 
generators, and many configurations and tunes, is testing 
just one or a few alternate generators enough?

GENIE v3
NuWro
GiBUU
NEUT

Phase Space Of All Models

Reality

GENIE v3
NuWro
GiBUU
NEUT

GENIE v3
NuWro
GiBUU
NEUT

GENIE v2
ACHILLES
NUANCE

…

Reality

(Made up for illustration, very high dimensional in reality)

Fake-Data Closure Testing
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Data-driven Model Validation
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• In traditional fake-data closure tests, we 
try to ensure that the cross section model 
used for the extraction is consistent with 
other cross section models in the relevant 
phase space

GENIE v3
NuWro
GiBUU
NEUT

Phase Space Of All Models
(Made up for illustration, very high dimensional in reality)

GENIE v3
Reality

Phase Space Of All Models
(Made up for illustration, very high dimensional in reality)

Fake-Data Closure Testing

• In data-driven model validation, we try 
to ensure that the cross section model 
used for the extraction is consistent with 
real data in the relevant phase space



• To test the consistency between data and our cross section model, we 
use goodness of fit tests


• First obvious thing to do: a /ndf test


• Calculate  in the reconstructed space using the measured counts , 
predicted counts , and the covariance matrix of uncertainties 


• Ideally, do this not only in the variable being extracted, but also in several 
other variables, which could be more sensitive to physics that would 
affect the efficiency, detector response, and background prediction

χ2

χ2 M
P V

27Lee Hagaman on behalf of the MicroBooNE Collaboration

/ndf Testsχ2
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• Our cross section model doesn’t just 
predict individual channels, it also 
predicts correlations between channels


• We can test this correlation by using a 
conditional constraint


• This uses Bayes’ theorem to update the 
prediction and uncertainty on one 
channel after constraining with another 
channel

Conditional Constraint /ndf Testsχ2
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Conditional Constraint /ndf Testsχ2

Lee Hagaman on behalf of the MicroBooNE Collaboration

Fully Contained (FC) and Partially Contained (PC) 
Constraining  and  observations:Erec

μ cos θrec
μ

• With MicroBooNE CC data, after using 
muon kinematics to constrain the 
reconstructed hadronic energy, we see a 
substantial update, with good agreement 
and good /ndf


• This type of test can be much more 
sensitive to cross section model 
deficiencies

νμ

χ2

Conditional constraint 
updating red to blue:

arXiv:2411.03280

https://arxiv.org/abs/2411.03280
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• The effect of a conditional constraint can be easily interpreted in some cases 


• As an example, with NuWro fake data, we use muon kinematics to constrain 
the muon-proton opening angle distribution


• NuWro has a much smaller MEC prediction relative to GENIE


• After the update from the constraint, this difference is reflected in the muon-
proton opening angle distribution


• Good agreement for the QE-dominant  
(large angle) region


• Bad agreement for the MEC/RES-dominant  
(small angle) region


• This tells us that the NuWro MEC prediction  
seems to be outside of GENIE uncertainties 
(more on NuWro/GENIE comparisons later)

The Conditional Constraint Isn’t A Black Box! 
NuWro Fake Data: MEC Rate and θμ,p

NuWro
GENIE

arXiv:2411.03280

https://arxiv.org/abs/2411.03280


• Even after a conditional constraint, a /ndf test isn’t 
necessarily good enough


• It can be tricked if some conservative uncertainties 
mask other inadequate uncertainties


• Example: You can get a good /ndf if you have 
perfect shape agreement, but normalization far 
outside of uncertainties


• For this specific case, we could collapse to one bin 
and then calculate /ndf for a more sensitive test


• But other similar issues are also possible, is there a 
more general solution?

χ2

χ2

χ2

31Lee Hagaman on behalf of the MicroBooNE Collaboration

Reconstructed Eμ

C
ou

nt

GENIE v3

Possible Observation

/ndf < 1χ2

 Test Failuresχ2



• Using an eigenvalue decomposition, we can transform the 
covariance matrix into a space with no bin-to-bin correlations


• We get the same  value as normal, but now each bin is 
uncorrelated, and corresponds to a specific type of 
prediction change across all reco bins


• We can calculate a p-value for each bin according to a 1-bin 
 distribution, and then account for the look elsewhere 

effect, translating that set of p-values to a global p-value 
using the largest discrepancy


• This can be performed any time we have a covariance matrix


• Before or after constraint, in reco space or unfolded truth 
space

χ2

χ2

32Lee Hagaman on behalf of the MicroBooNE Collaboration

 Decomposition Testsχ2

: diagonal matrix of  eigenvalues
Λ V
: corresponding matrix of  
eigenvectors as columns

Q̃ V

arXiv:2411.03280

https://arxiv.org/abs/2411.03280
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 Decomposition Exampleχ2

• Looking at the  decomposition for the 
previous GoF test, we see good 
agreement in each bin


• We can look at the matrix of eigenvectors 
to see how decomposition bins relate to 
the original bins


• For example, the first decomposition bin 
corresponds to a decrease in the first 
three energy bins, and an increase in the 
remaining bins


• Resembles a bin migration effect


• Our data does show some preference 
for this type of shape change, but the 
corresponding  value tells us that this 
movement is within uncertainties

χ2

ϵ0

arXiv:2411.03280

https://arxiv.org/abs/2411.03280


• In general, the best model validations to perform 
depends on the type of measurement being made


• One particularly important part of the model to validate 
is the  mapping


• Important for future oscillation analyses


• Important for  cross sections


• Important for “nominal flux” extractions


• For calorimetric energy reconstructions,  and  
differ by 


• No direct measurement possible

Etrue
ν → Erec

ν

σ(Eν)

Etrue
ν Erec

ν
Einvis

had

34

Eμ

Evis
had

Einvis
had

μ−

pπ+

n

Invisible Neutrino Energy Modeling Validation

  Etrue
ν = Eμ + Evis

had + Einvis
had

Consider  CC 
interactions: 

νμ

Lee Hagaman on behalf of the MicroBooNE Collaboration



Invisible Neutrino Energy Modeling Validation

• Energy conservation: if modeling of  is  
correct, then our modeling of  must be correct


• We can’t test this event-by-event, but we can test this for 
a distribution of many events


• Specifically, we want to validate our modeling of the 
correlation between hadronic and leptonic energy 


• A conditional constraint test shows that  data matches 
the prediction within uncertainties when using  (from our 
flux model) and  (from our data measurement)


• So, these three distributions tell a consistent story, and 
therefore we have increased confidence in our modeling of 

Etrue
ν , Eμ, Evis

had
Einvis

had

Evis
had

Etrue
ν

Eμ

Einvis
had
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Modeled from 
beam simulation

Measured from 
muon range

Measured from 
hadronic ionization

  Etrue
ν = Eμ + Evis

had + Einvis
had

Lee Hagaman on behalf of the MicroBooNE Collaboration

Initially unknown 
(Neutrons, low 

energy photons, etc.)

arXiv:2411.03280

https://arxiv.org/abs/2411.03280


Invisible Neutrino Energy Modeling Validation

• We first used this type of constraint in 2022 
with lower data statistics 


• Validated our modeling before extracting 
true neutrino energy  and true energy 
transfer  cross sections

σ(Eν)
dσ/dν

36Lee Hagaman on behalf of the MicroBooNE Collaboration Phys. Rev. Lett. 128, 151801 (2022)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.151801


Invisible Neutrino Energy Modeling Validation

• In 2023, we expanded a similar model validation 
to multiple dimensions before extracting 3D 
cross sections including an  dimensionEν

37Lee Hagaman on behalf of the MicroBooNE Collaboration

 constrained by {Ehad
rec , cos θμ} {Pμ, cos θμ}

arXiv:2307.06413

https://arxiv.org/abs/2307.06413
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Traditional Fake-Data Closure Testing

Lee Hagaman on behalf of the MicroBooNE Collaboration

• 3: How do you know when to stop? There are 
many generators, and many configurations and 
tunes, is testing just one or a few alternate 
generators enough?

Data-driven Model Validation

Data-driven Model Validation Has Its Own Similar Limitations

• 2: What if a model validation test fails, but the failure 
is actually in a phase space irrelevant to the analysis 
(not significantly affecting the detector response, 
efficiency, and background prediction), leading to 
an unnecessary expansion of uncertainties?

• 1: What if the variety of model validation 
tests performed does not detect relevant 
mis-modeling?

• 3: How do you know when to stop? There 
are many model validation tests you can 
think of, how many should you perform?

• 2: What if the spread of models included 
in fake data tests is very large, and makes 
you expand to very large uncertainties, 
even when your original model is good?

• 1: What if the spread of models included in 
fake data tests do not describe the real cross 
section? 
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• For one analysis, we examined CC inclusive 
final states with and without protons


• Our model validation for the reconstructed 
leading proton energy  fails!


• A low energy proton connected to a muon is a 
topology that LArTPCs can study much more 
precisely than some other detectors


• Low energy proton mis-modeling could 
potentially cause incorrect neutrino 
background estimates in searches for coherent 
interactions or BSM decay-in-flight events

νμ

Krec
p

What About When Model Validation Fails?

Phys. Rev. Lett. 133, 041801 (2024)Phys. Rev. D 110, 013006 (2024)

https://doi.org/10.1103/PhysRevLett.133.041801
https://doi.org/10.1103/PhysRevD.110.013006
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• We use this data-simulation difference to expand 
our cross section uncertainty


• Unfold this distribution (statistical uncertainty only) 
to get a reweighting binned in true 


• We use this reweighting function to form a new 
covariance matrix describing this data/MC 
difference, including correlated and uncorrelated 
terms


• When we use this to expand our cross section 
uncertainty, we pass all model validation tests


• Then we can extract cross sections related to 
protons

Kp

Phys. Rev. Lett. 133, 041801 (2024)

Phys. Rev. D 110, 013006 (2024)

What About When Model Validation Fails?

https://doi.org/10.1103/PhysRevLett.133.041801
https://doi.org/10.1103/PhysRevD.110.013006


Fake Data Sets For Data-driven Model Validation

41Lee Hagaman on behalf of the MicroBooNE Collaboration

• How do we know if a data-driven model validation is sensitive to the types of 
discrepancies that would bias our cross section results?


• We demonstrate the sensitivity using fake data sets


• Fake data plays a specific role here:


• If a fake data set passes model validation, we must ensure that we extract a correct 
cross section


• If a fake data set fails model validation, then we conclude that it is too far outside 
our modeled cross section uncertainty, and that an extracted result would have too 
much bias


• We don’t use fake data to test the robustness of our cross section model; instead, we 
use fake data to test the robustness of our model validation procedure



Proton Energy Scaling Fake Data
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• One concern about  modeling: the splitting 
between  and  could be modeled wrong


• For example, maybe we model that 50% of 
hadronic energy in an event goes to protons 
and 50% goes to neutrons, but in reality that 
split is 40%/60%


• We can create a fake data test for this type of 
scenario by scaling reconstructed proton energies 
down by 15%


• This shift is significant, outside our modeled 
GENIE uncertainties


• This type of reconstructed hadronic energy 
shifting relative to GENIE is also seen in alternate 
generators, for example NuWro

σ(Eν)
Evis

had Einvis
had

arXiv:2411.03280

True Energy Transfer ν = Eν − Eμ

https://arxiv.org/abs/2411.03280


Proton Energy Scaling Fake Data
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• With a 15% downscaling of 
reconstructed proton energy:


• Good model validation


• Good cross section extraction


• This tells us that if our modeling of 
the split between visible and 
invisible hadronic energy is off by 
15%, it would not bias our  
and  cross section results

σ(Eν)
dσ/dν

Good Model Validation Good XS Extractions

arXiv:2411.03280

https://arxiv.org/abs/2411.03280


Proton Energy Scaling Fake Data
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• With a larger 25% downscaling of 
reconstructed proton energy:


• Bad model validation


• Bad cross section extraction


• This tells us that if our modeling of the 
split between visible and invisible 
hadronic energy was this bad, we would 
notice this ahead of time with model 
validation tests, and would stop before 
extracting any biased cross sections

Bad Model Validation Bad XS Extractions

arXiv:2411.03280

https://arxiv.org/abs/2411.03280


Proton Energy Scaling Fake Data

45Lee Hagaman on behalf of the MicroBooNE Collaboration

• Those were examples at proton energy 
scalings of 0.85 and 0.75, and with a 
specific model validation test: constraining 

 using FC&PC  and  
observations


• We also test with more proton energy 
scalings, and with more model validation 
tests


• For every scaling, we see that model 
validation is more sensitive to mis-modeling 
than extracted cross section results


• None of these scenarios would lead us to 
extract a biased cross section


• In every case, we would either extract a 
correct cross section, or we would stop 
when model validation failed

Erec
had Erec

μ cos θrec
μ

List of 50 different model validation 
tests performed at each scaling:

First example, no significant 
model validation failure,  

no significant extracted XS bias

Second example, significant 
model validation failure, 

significant extracted XS bias

arXiv:2411.03280

https://arxiv.org/abs/2411.03280


DUNE-ND Proton Energy Scaling Fake Data
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• What if the modeling is wrong, but the model validation 
passes anyway?


• A “nightmare scenario”, unluckily having multiple mis-
modelings cancel each other out to give good agreement 
to data


• This was a possibility considered in the DUNE Near Detector 
Conceptual Design Report


• What if 20% of the modeled proton energy is actually 
carried away by neutrons?


• This would be noticed in the near detector data, but what 
if there’s additional cross section mis-modeling and 
tuning that causes the near detector data to look good?


• In this case, we could extract biased oscillation parameters, 
despite passing all data driven model validation tests in the 
near detector!

Instruments 2021, 5(4), 31

https://doi.org/10.3390/instruments5040031
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• For illustration, we recreate a similar scenario 
using MicroBooNE simulation


• We shift the reconstructed proton energy down 
by 20%


• Then, we have a multivariate BDT reweighting to 
restore the distributions of , , and 




• Simulating a mis-modeled cross section that 
happens to cancel out the proton energy shift


• This reweighting results in good distributions of 
, , and 

Etrue
μ cos θtrue

μ
ν = Eν − Etrue

μ

Erec
μ cos θrec

μ Erec
had

Recreating DUNE-ND Proton Energy Scaling Fake Data

arXiv:2411.03280

https://arxiv.org/abs/2411.03280
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• Looking at QE events:


• This BDT reweighting results in a similar 
cross section change as DUNE saw


• Significantly scaling up the cross section at 
large , and down at low Q2 Q2

From DUNE ND 
CDR study:

From MicroBooNE 
study:

Recreating DUNE-ND Proton Energy Scaling Fake Data

arXiv:2411.03280

https://arxiv.org/abs/2411.03280
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• In this fake data test:


• 0  disagreement in our model validation tests


• 0.7  disagreement in the  cross section


• This is a worst-case-scenario, where there is more bias in an 
extracted cross section than in any model validation test


• How likely are we to end up in this situation, where multiple mis-
modelings cancel each other out to give good agreement to data?


• This is hard to quantify, but as an illustration, we can see how this 
BDT-reweighted model holds up from some other perspectives

σ

σ dσ/dν

Recreating DUNE-ND Proton Energy Scaling Fake Data



Recreating DUNE-ND Proton Energy Scaling Fake Data:  
QE Events
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• The cross section for QE events as a function of  is 
among the most well understood parts of our cross 
section models


• Constrained by theoretical modeling and electron 
scattering data


• Looking at this distribution, the BDT reweighting results in 
a cross section very far outside of theoretical uncertainties


• Such a large change that could cancel out the proton 
energy scaling seems implausible

Q2

arXiv:2411.03280

https://arxiv.org/abs/2411.03280


Recreating DUNE-ND Proton Energy Scaling Fake Data:  
Real Data GKI Measurements
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• We can also see how this proton energy shifting and 
BDT reweighting would affect other types of 
measured neutrino cross sections


• Here, we examine how this would change our data-
prediction consistency for a multidimensional 
generalized kinematic imbalance (GKI) distribution, 
Phys. Rev. D 109, 092007 (2024)


• In some of the phase space, it moves the prediction 
notably further from real data, again indicating that 
this energy shift + XS modification does not seem 
plausible

arXiv:2411.03280

https://doi.org/10.1103/PhysRevD.109.092007
https://arxiv.org/abs/2411.03280


Recreating DUNE-ND Proton Energy Scaling Fake Data
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• This is one example of a case where different effects could conspire to make 
data-driven model validation fail


• In this specific case, there are signs that such a scenario would be 
inconsistent with other data


• We can’t prove this in general for all possible model validation failures, but 
this is an illustration of the fact that there are a lot of constraints on our 
models, so it is not easy for them to be badly wrong in such specific ways
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• Used NuWro 19.02.2 as fake data


• First, we include all systematic uncertainties


• This is most accurately testing the sensitivity of the 
data-driven model validation procedure, which will 
use all uncertainties


• We conclude that if this was real data, there would 
be no bias beyond uncertainties in a resulting cross 
section extraction

GENIE v3
NuWro

Phase Space Of All Models
(Made up for illustration, very high dimensional in reality)

NuWro Fake Data:  Cross Section Extraction 
All Systematic Uncertainties

Eν

arXiv:2411.03280

https://arxiv.org/abs/2411.03280


NuWro Fake Data:  Cross Section Extraction 
Cross Section And Statistical Uncertainties

Eν
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• Secondly, we included only cross section and 
statistical uncertainties


• This is testing specifically the cross section model, 
since the flux and detector response modeling is 
identical between the prediction and the fake data


• We conclude that NuWro is outside of our GENIE v3 
MicroBooNE tune cross section model uncertainties


• If this was real data, and if we had drastically smaller 
flux and detector uncertainties, we would fail model 
validation and therefore stop before extracting a 
biased cross section result

GENIE v3
NuWro

Phase Space Of All Models
(Made up for illustration, very high dimensional in reality)

arXiv:2411.03280

https://arxiv.org/abs/2411.03280


Summary
• Model dependence is relevant precisely where we don’t have quantitative estimates of bias from cross 

section models, so I think there’s never going to be a simple exact answer for this issue 


• When we don’t trust our cross section models, real data can be a very valuable resource


• Data-driven model validation is a useful tool for limiting model dependence in cross section results


• Fake data studies have shown it to be sensitive to relevant mis-modeling in all cases we have 
examined


• In a manufactured example, it is possible for a precise cancellation of multiple mis-modelings to 
cause a failure of the model validation procedure, but such a case seems likely to be excluded by 
other types of data


• This is not the only valid way to extract cross sections, and it has its own sets benefits and limitations 
relative to fake data closure testing. In MicroBooNE, we continue to use both techniques in different 
analyses.


• Our main goal for a discussion is to ensure a mutual understanding of the data-driven model validation 
technique

55Lee Hagaman on behalf of the MicroBooNE Collaboration



Thanks for your attention!
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Backup Slides
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All MicroBooNE Cross Section Results

• Rare channels


•  production, BNB, Phys. Rev. Lett. 132, 151801 (2024)


•  production, NuMI, Phys. Rev. Lett. 130, 231802 (2023) 


• NC  (interpreted as a limit on the cross section), 
BNB, Phys. Rev. Lett. 128, 111801 (2022)


• CC 0  


• 2D  CC Np0 , BNB, arXiv:2403.19574 


• 1D & 2D  CC 1p0  Generalized Imbalance, BNB, Phys. 
Rev. D 109, 092007 (2024)


• 1D & 2D CC 1p0  Transverse Imbalance, BNB, Phys. Rev. 
Lett. 131, 101802 (2023), Phys. Rev. D 108, 053002 (2023) 


• 1D CC Np0 , BNB, Phys. Rev. D 106, L051102 (2022) 


• 1D  CC 2p0 , BNB, arXiv:2211.03734 


• 1D  CC Np0 , BNB, Phys. Rev. D102, 112013 (2020) 


• 1D  CC 1p0 , BNB, Phys. Rev. Lett. 125, 201803 (2020) 

η

Λ
Δ → Nγ

π

νμ π

νμ π

νμ π

νe π

νμ π

νμ π

νμ π
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• CC inclusive


• CC neutron production, BNB, arXiv:2406.10583


• 3D CC inclusive 0p/Np, BNB, Phys. Rev. Lett. 133, 041801 
(2024), Phys. Rev. D 110, 013006 (2024)


• 3D CC inclusive, BNB, arXiv:2307.06413 


• 1D CC inclusive , BNB, Phys. Rev. Lett. 128, 151801 
(2022) 


• 1D CC inclusive, NuMI, Phys. Rev. D105, L051102 (2022)


• One bin CC inclusive, NuMI, Phys. Rev. D104, 052002 (2021) 


• 2D CC inclusive, BNB, Phys. Rev. Lett. 123, 131801 (2019) 


• Pion production 


• 2D NC , BNB, arXiv:2404.10948


• 1D CC , BNB, arXiv:2404.09949


• 1D NC , BNB, Phys. Rev. D 107, 012004 (2023) 


• One bin CC , BNB, Phys. Rev. D 99, 091102(R) (2019)

νμ

νμ

νμ

νμ Eν

νe

νe

νμ

π0

π0

π0

π0
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M(Erec) = POT ⋅ T ⋅ ∫ F (Eν) ⋅ σ (Eν) ⋅ D (Eν → Erec) ⋅ ε (Eν, Erec) ⋅ dEν + B (Erec)

Protons 
on target

Number of 
targets

Beam 
flux

Cross 
section

Detector 
response

Selection 
efficiency Background

All of these quantities must consider full flux, cross-section, detector, and statistical uncertainties!

M(Erec) =
POT ⋅ T ⋅ ∫

j
F (Eν j) ⋅ σ (Eν j) ⋅ D (Eν j → Erec i) ⋅ ε (Eν j, Erec i) ⋅ dEν j

POT ⋅ T ⋅ ∫
j
F (Eν j) ⋅ σ (Eν j) ⋅ dEν j

⋅ POT ⋅ T ⋅ ∫j
F (Eν j) ⋅ dEν j ⋅

∫
j
F (Eν j) ⋅ σ (Eν j) ⋅ dEν j

∫
j
F (Eν j) ⋅ dEν j

+ B (Erec)

Re-writing this same equation to be useful later (adding more terms that cancel each other out):

M(Erec)i = Δ̃ij ⋅ F̃j ⋅ Sj + B (Erec)i

F̃jΔ̃ij Sj

Lee Hagaman on behalf of the MicroBooNE Collaboration

How We Unfold To The Nominal Flux
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Δ̃ij =
POT ⋅ T ⋅ ∫

j
F (Eν j) ⋅ σ (Eν j) ⋅ D (Eν j, Erec i) ⋅ ε (Eν j, Erec i) ⋅ dEν j

POT ⋅ T ⋅ ∫
j
F (Eν j) ⋅ σ (Eν j) ⋅ dEν j

Sj =
∫

j
F (Eν j) ⋅ σ (Eν j) ⋅ dEν j

∫
j
F (Eν j) ⋅ dEν j

F̃j = POT ⋅ T ⋅ ∫j
F (Eν j) ⋅ dEν j Binned nominal flux

Nominal flux-binned cross-
section signal 

This is what we want to 
measure!

Cross-section uncertainty 
largely (but not entirely) 

cancels

Lee Hagaman on behalf of the MicroBooNE Collaboration

M(Erec)i = Δ̃ij ⋅ F̃j ⋅ Sj + B (Erec)i

How We Unfold To The Nominal Flux


