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With Deepest Respect to the Memory of Slava Danilov
(21 Jan, 1966 – 30 Dec, 2014)
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Fundamental contributions to chaotic and integrable
dynamics

Chirikov map [1969] and McMillan map [1971]

Left: Edwin Mattison McMillan (18 Sep, 1907 – 7 Sep, 1991)
Right: Boris Valerianovich Chirikov (6 Jun 1928 – 12 Feb 2008)
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From McMillan map to IOTA

Series of works by E. Perevedentsev [1997] and V. Danilov
[1997,1999,1999,2008].

V. Danilov & S. Nagaitsev, “Nonlinear accelerator lattices
with one and two analytic invariants,” (IOTA) [2010].

Some important results

R.I. McLachlan, “Integrable four-dimensional symplectic maps
of standard type,” [1993].

A. Iatrou, J.A. Roberts, “Integrable mappings of the plane
preserving biquadratic invariant curves I, II, III,” [2001,2002,
2003].

S. Nagaitsev, T. Zolkin, “Betatron frequency and the
Poincaré rotation number,” (Danilov Theorem) [2020].
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Quadrature — a process of drawing a square with the
same area as a given plane figure

Solved systems (thanks to Danilov Theorem)

Axially symmetric configuration for IOTA (no log r term)
[2012-2014]

McMillan octupole (canonical McMillan map) [2016 + 2023]

McMillan sextupole (first order approximation to sextupole)
[2022 + 2023]

Linear and nonlinear mappings with polygon invariants
[2016,2023-2024]

4D axially symmetric McMillan map (e-lens) [2020 + 2024]

Symmetric and asymmetric McMillan mappings [2024]

... (to be continued)

with help of S. Nagaitsev, I. Morozov, Y. Kharkov, I. Lobach,
B. Cathey, E. Stern, S. Kladov and others.

Tim Zolkin Universal Model of Thin Nonlinear Lens



The tables have turned...

Left: Lucci starts to have very violent thoughts towards his tail.
Right: To Lucci’s surprise, one day, the tables turned.
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One crucial aspect of integrable systems often overlooked is their utility as
approximations of real-world systems. Though idealized, integrable mod-
els often provide highly accurate descriptions of physical phenomena. A
historical example is the ancient model of planetary motion, where the
concept of deferent and epicycle predicted planetary positions from a geo-
centric perspective. Although modern celestial mechanics acknowledges
the complexity of the n-body problem, the search for accurate approxima-
tions persists...
However, Keplers laws of planetary motion, which introduced elliptical or-
bits, stood out among these methods. From the perspective of modern
Hamiltonian dynamics and dynamical systems theory, we now understand
that it was not merely a coincidence or a fortunate approximation. By
uncovering the integrable “core” of celestial mechanics, Kepler’s laws pro-
vided a remarkably precise description of planetary dynamics and revealed
deeper structure within the chaotic complexity of solar system dynamics.

Similarly, the McMillan map acts as an integrable approximation for a

broad class of nonlinear mappings in standard form , featuring a typical

force function (i.e., smooth with at least one nonzero quadratic or cubic

coefficient in its Taylor series)...
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The one-turn map of 1D accelerator lattice with thin
nonlinear lens can be brought to form:

q′ = p,

p′ = −q + f (p), f (ε p) = a ε p + b ε2p2 + c ε3p3 + . . . .

Looking for an approximate invariant:

K(n) = K0+εK1+ε2K2+. . .+εnKn : K′(n)−K(n) = O(εn+1),

where Km are homogeneous polynomials of degree (m + 2):

K(2) = K0[p, q]− ε b

a + 1
(p2 q+p q2)+ε2

[
b2

a (a + 1)
− c

a

]
p2q2.

Up to a second order K(n)[p, q] matches McMillan map

A

ε2
=

b2

a (a + 1)
− c

a
,

B

ε
= − b

a + 1
, ρ =

A

B2
.
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II. Symmetric McMillan map

Form of the map

Let MSF : Z→ Z′ be an area-preserving map in standard form (SF)
from Z = (Q,P) ∈ R2 to itself:

MSF : Q ′ = P,

P ′ = −Q + F (P),

M−1SF : Q ′ = −P + F (Q),

P ′ = Q,

where (′) indicates the application of the map, and F (P) is referred
to as the force function.

Force function

The most general symmetric McMillan map is then defined by a
special rational function of degree two:

Fs(P) = −B0 P
2 + E0 P + Ξ0

A0 P2 + B0 P + Γ0
.
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II.1 Invariant/integral of motion

The map is integrable, meaning that there exists an integral or in-
variant of motion Ks[P,Q]:

∀ (Q,P) ∈ R2 : Ks[P
′,Q ′]−Ks[P,Q] = 0,

that is given by a biquadratic function depending on six parameters:

Ks[P,Q] = A0 P
2Q2 + B0 (P2Q + P Q2)

+Γ0 (P2 + Q2) + E0 P Q + Ξ0 (P + Q) + K0

=

Q2

Q
1

T

·

A0 B0 Γ0

B0 E0 Ξ0

Γ0 Ξ0 K0

 ·
P2

P
1

 .
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II.2 “Normal” form and intrinsic variables

q′ = p, f0 (p) = − q2 − a q

ρ q2 + q + 1
,

p′ = −q + f (p), f±(p) = − r q2 − a q

±q2 + r q + 1
.

B 6= 0 : K0
s [p, q] = K0[p, q] + (p2q + p q2) + ρ p2q2, ρ =

ΓA

B
2
,

A 6= 0 : K±s [p, q] = K0[p, q] + r (p2q + p q2)± p2q2, r =
1
√
ρ
,

K0[p, q] = p2 − a p q + q2.
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ρ 1 1
1 −a 0
1 0 0

 or

±1 r 1
r −a 0
1 0 0



Linear tune:

2π ν0 = arccos[a/2]

Nonlinear detuning:

2π µ0 =
1

4− a2

[
3 a ρ− (a + 1)(a + 8)

2− a

]
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III. Fixed points and n-cycles

To do:

Solve for fixed points (n = 1) and n-cycles

ζ(n) = {ζ0, ζ1, . . . , ζn−1} : Mnζ0 = ζ0, ζ0 = (q0, p0).

Analyze linear stability, |τ [ζ(n)]| < 2

τ [ζ(n)] = Tr J(ζ(n)), J =

∂q′/∂q ∂q′/∂p

∂p′/∂q ∂p′/∂p

 .
Determine real domain, ζ(n) ∈ R2.

Determine (super-) degeneracies, K[ζ
(n)
i ] = K[ζ

(n)
j ] for i 6= j .

Determine singularities.
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Domain/stability diagrams

A > 0 Fixed points ζ2,3 A > 0 2-cycle ζ(2) A < 0 All critical points
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IV. Regimes with stable motion

Characteristic polynomial

By solving for momentum from the expression for the invariant

p =
1

2

(
fs(q)±

√
D4(q)

A q2 + B q + 1

)
,

we can classify specific trajectories based on the roots q1,2,3,4 of the
characteristic polynomial D4(q)

(B2−4A) q4−2 (a+2)B q3+(a2−4+4AKs) q
2+4BKs q+4Ks,

and two roots of the quadratic polynomial in the denominator

q5,6 = (−B∓
√
R0)/(2A).
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IV.1 Classification of stable motions

Unimodal (UM)

Double-well (DW)

Double lemniscate (DL)

Simply connected (SC)
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Unimodal, Double-well and double lemniscate
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V. Dynamical properties

Canonical action-angle coordinates:

Ms : J ′ = J, {Jn} = {J0},

ψ′ = ψ + 2π ν(J), {ψn} = {ψ0}+ 2π n ν({J0}).

Use of Danilovs Theorem

ν =

∫ q′

q
(∂Ks/∂p)−1 dq∮

(∂Ks/∂p)−1 dq
=

∫ q′

q
dq/

√
D4(q)

2

∫ q+

q−

dq/
√
D4(q)

,

J =
1

2π

∮
p dq =

1

2π

∫ q+

q−

√
D4(q)

A q2 + B q + 1
dq.
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V.1 Taking the integrals (S. Kladov)

Use of Danilovs Theorem

ν =
F[Φ(q′), κ]

2K[κ]
, J =

√
|R0|

2A
Σ,

Σ = cKK[κ] + cEE[κ] + c0Π[α0, κ] + c1Π[α1, κ] + c2Π[α2, κ].
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V.2 Inverting the integrals (S. Kladov + A. Iatrou et al.)

Lesson 1

qn =
a + b sn2[φn/2]

c + d sn2[φn/2]
, φn =

K[κ]

π/2
{ψn} = φ0 + 4 n νK[κ].
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V.3 Detuning

Lesson 2

2π (ν − ν0) =
s1
1!

J

4− a2
− s2

2!

J2

(4− a2)5/2
+O(J3), where

s1 = 3 aA− (a + 1)(a + 8)

2− a
B2,

s2 = a (74 + 7 a2)A2 − 2
208 + 442 a + 248 a2 + 71 a3 + 3 a4

2− a
AB2

+ (a + 1) 736+626 a+198 a2+7 a3−a4
(2−a)2 B4.
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Example: Quadratic Hénon map, f (q) = a q + q2

The corresponding second-order approximate invariant is:

K(2)
SX-2[p, q] = K0[p, q]− p2q + p q2

a + 1
+

p2q2

a (a + 1)
,

fSX-2(q) =
a q2 + a2(a + 1) q

q2 − a q + a (a + 1)
= a q + q2 +O(q4),

with its normal form given by:

K(2n)
SX-2[p, q] = K0[p, q] + p2q + p q2 + ρn p

2q2,

ρn =
a + 1

a
=

2 cos[2π ν0] + 1

2 cos[2π ν0]
.
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Atlas of intrinsic parameters
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Nonlinear detuning (twist), µ0 = dν/dJ
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Nonlinear emittance vs. nonlinear tune, ν(J)
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Sextupole and Octupole

Tim Zolkin Universal Model of Thin Nonlinear Lens



VI. Summary

This article presents a comprehensive study of the most general symmetric

McMillan map, emphasizing its role as a universal model for understand-

ing nonlinear oscillatory systems, particularly symplectic/area-preserving

mappings of the plane in standard form with typical force functions. By

identifying only two irreducible parameters the linearized rotation number

at the fixed point and the coefficient representing the ratio of nonlinear

terms in the biquadratic invariant the McMillan map is shown to be both

relatively simple and compact, yet highly accurate as an integrable approx-

imation for a broad class of standard-form mappings, especially near main

resonances. Through an in-depth analysis of the maps intrinsic parame-

ters, we provide a complete solution to the mapping equations and classify

regimes of stable motion. This general model offers analytical expressions

for the nonlinear tune shift, rotation number, and action-angle variables,

and, also serves as a systematic approach to understanding the qualitative

behavior of nonlinear systems under various parameter settings.
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VI. Summary

In the second part of the study, we focus on specific applications of the sym-

metric McMillan map to model chaotic systems, specifically the quadratic

Hénon map and accelerator lattices with thin sextupole magnet. By es-

tablishing a connection between these systems, we demonstrate how the

McMillan map extends the linear Courant-Snyder formalism, enabling pre-

dictions of dynamic aperture and the nonlinear betatron tune (rotation

number) as a function of amplitude. We also provide the expression for

the approximated single particle emittance of the beam (the phase space

area occupied by particles). This work underscores the importance of us-

ing integrable systems to accurately model complex nonlinear interactions

under certain conditions, reinforcing the relevance of such models in both

theoretical research and practical applications.
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Thank you for your attention.

Questions?
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