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1.1 Hénon map

Entire Cremona transformation with second degree polynomials

x ′ = c̃10x + c̃01y + c̃20x
2 + c̃11x y + c̃02y

2

y ′ = c̄10x + c̄01y + c̄20x
2 + c̄11x y + c̄02y

2
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Example: Thin sextupole

Consider simple 1D accelerator lattice consisting of linear optics el-
ements (drift spaces, dipoles, and quadrupoles)

M :

[
x
ẋ

]′
=

[
cos Φ + α sin Φ β sin Φ
−γ sin Φ cos Φ− α sin Φ

] [
x
ẋ

]
,

where Φ =
∮

ds
β(s) = 2π ν0, followed by a single thin sextupole lens:

F :

[
x
ẋ

]′
=

[
x
ẋ

]
− S

2

[
0
x2

]
, S =

∫
Kx(s) ds.

x0 + ẋ0 + α + β + γ + Φ + S − ”[β γ − α2 = 1]”

= 4 parameters + 2 initial conditions
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Hénon vs McMillan forms of the map

Hénon form of the map, F (x) = x2

x ′ = x cos Φ− [y − F (x)] sin Φ

y ′ = x sin Φ + [y − F (x)] cos Φ

T :

{
q = x cos Φ + y sin Φ

p = x ,

f (q) = 2 q cos Φ + sin ΦF (q) .

McMillan form of the map, f (q) = a q + q2

q′ = p

p′ = −q + f (p)
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1.2 Symmetric McMillan map

Form of the map

Q ′ = P,

P ′ = −Q + F (P),
Fs(P) = −B0 P

2 + E0 P + Ξ0

A0 P2 + B0 P + Γ0
.

Invariant of motion

Ks[P,Q] = A0 P
2 Q2 + B0 (P2Q + P Q2)

+Γ0 (P2 + Q2) + E0 P Q + Ξ0 (P + Q) + K0

=

Q2

Q
1

T

·

A0 B0 Γ0

B0 E0 Ξ0

Γ0 Ξ0 K0

 ·
P2

P
1

 .
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“Normal” form and intrinsic variables

q′ = p, f0 (p) = − q2 − a q

ρ q2 + q + 1
,

p′ = −q + f (p), f±(p) = − r q2 − a q

±q2 + r q + 1
.

B 6= 0 : K0
s [p, q] = K0[p, q] + (p2q + p q2) + ρ p2q2, ρ =

ΓA

B
2
,

A 6= 0 : K±s [p, q] = K0[p, q] + r (p2q + p q2)± p2q2, r =
1
√
ρ
,

K0[p, q] = p2 − a p q + q2.
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2. Perturbation theory

The one-turn map of 1D accelerator lattice with thin
nonlinear lens can be brought to form:

q′ = p,

p′ = −q + f (p), f (ε p) = a ε p + b ε2p2 + c ε3p3 + . . . .

Looking for an approximate invariant:

K(n) = K0 +εK1 +ε2K2 +. . .+εnKn : K′(n)−K(n) = O(εn+1),

where Km are homogeneous polynomials of degree (m + 2):

K(2) = K0[p, q]− ε b

a + 1
(p2 q+p q2)+ε2

[
b2

a (a + 1)
− c

a

]
p2q2.
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Up to a second order K(n)[p, q] matches McMillan map

A

ε2
=

b2

a (a + 1)
− c

a
,

B

ε
= − b

a + 1
, ρ =

A

B2
.

Symmetric McMillan Map:

f (q) = − B q2 − a q

A q2 + B q + 1

= a q + b q2 + c q3 +
b (c (1 + 2 a)− b2)

a (a + 1)
q4 +O(q5)

Generic thin lens:

f (q) = a q + b q2 + c q3 + d q4 +O(q5)
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Example: Quadratic Hénon map, f (q) = a q + q2

The corresponding second-order approximate invariant is:

K(2)
SX-2[p, q] = K0[p, q]− p2q + p q2

a + 1
+

p2q2

a (a + 1)
,

fSX-2(q) =
a q2 + a2(a + 1) q

q2 − a q + a (a + 1)
= a q + q2 +O(q4),

with its normal form given by:

K(2n)
SX-2[p, q] = K0[p, q] + p2q + p q2 + ρn p

2q2,

ρn =
a + 1

a
=

2 cos[2π ν0] + 1

2 cos[2π ν0]
.
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Atlas of intrinsic parameters
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Sextupole and Octupole
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Hénon Stability Diagram
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3. Comparison of stability diagrams
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3.1 Integer resonance, ν0 = 0
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Integer resonance, ν0 = 0

Comparing fixed points

ζHénon
un = 2− a, ζSX-2

un =
3 a−

√
a (8 a2 + a− 16)

4

we see the accuracy of the model

ζHénon
un − ζSX-2

un = −1
6 δr

3
0 +O(δr4

0 ), δr0 = (2− a).

d ζHénon
un

da

∣∣∣∣
δr0=0

=
d ζSX-2

un

da

∣∣∣∣
δr0=0

= −1.

However, the SX-2 model also provides a linear estimate for the
lower boundary (separatrix location):

d ζSX-2
sep

da

∣∣∣∣∣
δr0=0

=
1

2
.
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3.2 Half-integer resonance, ν0 = 1/2

τ
(
ζ

(2)
Hénon

)
= 14−a (a−4), τ

(
ζ

(2)
SX-2

)
=

64 + 78 a + 24 a2 + a3

a (a + 1)
.

τ
(
ζ

(2)
Hénon

)
− τ

(
ζ

(2)
SX-2

)
= −4 δr2

1/2 +O(δr3
1/2), δr1/2 = a + 2.
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Half-integer resonance, ν0 = 1/2

Both derivatives tend to infinity at δr1/2 = 0:

d ζ
(2)
Hénon

da

∣∣∣∣∣
δr1/2=0

=
d ζ

(2)
SX-2

da

∣∣∣∣∣
δr1/2=0

=∞.

Thus, we can invert the dependence ζ
(2)
1,2 (a) to compare the terminal

values of parameter a

aHénon
t = −q − 4

2 + q
= −2− q2

2
+

q3

4
− q4

8
+O(q5),

aSX-2
t = −2− q2

2
+

q3

4
+

q4

8
+O(q5).
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Observation #1. The region where SX-2 approximation holds
aligns with the stability diagram’s areas that lack significant
mode-locking. In this area, higher-order resonances minimally
overlap, and stability is governed by the position of the unstable
fixed point.
Observation #2. Similar to the case of integer resonance, we
identify two regions of parameter accuracy: “high” and “medium.”
In the high-accuracy region, where the rotation number for the

2-cycle in the Hénon map is ν
(2)
0 ∈ (0.1, 0], both the unstable fixed

point at the origin and ζ
(2)
sep provide good estimates for the

mode-locked area. Further from the resonance, where
ν

(2)
0 ∈ (0.148, 0.1], ζ

(2)
sep maintains about 15% accuracy, while the

fixed point at the origin diverges from the boundary of the

mode-locked region. Beyond ν
(2)
0 > 0.148, most invariant tori

associated with orbits around the figure-8 separatrix are destroyed,
making the application of perturbation theory at the origin
questionable.
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3.3 Third-integer resonance, ν0 = 1/3

d ζSX-2
un

da

∣∣∣∣
δr1/3=0

= 1,
d ζSX-2

sep

da

∣∣∣∣∣
δr1/3=0

= −22 s−3.
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3.4 Resonance ν0 = 1/4

a
(4)
t = − q2

q + 1
= −q2 +q3 +O(q4) aSX-2

t = −q2 +O(q3).

a
(4)
t = −q3 + q2 + 2−

√
q4 + 4 q3 + 4 q2 + 4

q (q + 2)
= −q4

4
+
q6

8
+O(q7),
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Observation #3. Interestingly, both mappings exhibit an orbit
where ∂qν = 0 which appears for a < −1/2: solid white for the
Hénon map and dashed black/white for the SX-2 model. In the
chaotic case, this structure disappears, giving rise to a pair of
unstable and stable 3-cycles. In the integrable McMillan SX-2
map, however, it vanishes precisely at the ν0 = 1/3.

Observation #4. Within the region ν0 ∈ (0.25,∼ 0.252), before
the islands separate from the area around the origin, the
homoclinic orbit in the SX-2 model provides a fairly accurate
estimate along the second symmetry line.
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3.5 Mid-range amplitudes: ν0 6= 1
5 ,

2
5 ,

1
6 ,

1
7 ,

2
7 ,

3
7
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4. Accelerator lattice & thin sextupole (Floquet variables)
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Mid-range amplitudes
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5.1 Summary

This article presents a comprehensive study of the most general symmetric

McMillan map, emphasizing its role as a universal model for understand-

ing nonlinear oscillatory systems, particularly symplectic/area-preserving

mappings of the plane in standard form with typical force functions. By

identifying only two irreducible parameters the linearized rotation number

at the fixed point and the coefficient representing the ratio of nonlinear

terms in the biquadratic invariant the McMillan map is shown to be both

relatively simple and compact, yet highly accurate as an integrable approx-

imation for a broad class of standard-form mappings, especially near main

resonances. Through an in-depth analysis of the maps intrinsic parame-

ters, we provide a complete solution to the mapping equations and classify

regimes of stable motion. This general model offers analytical expressions

for the nonlinear tune shift, rotation number, and action-angle variables,

and, also serves as a systematic approach to understanding the qualitative

behavior of nonlinear systems under various parameter settings.
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5.2 Summary

In the second part of the study, we focus on specific applications of the sym-

metric McMillan map to model chaotic systems, specifically the quadratic

Hénon map and accelerator lattices with thin sextupole magnet. By es-

tablishing a connection between these systems, we demonstrate how the

McMillan map extends the linear Courant-Snyder formalism, enabling pre-

dictions of dynamic aperture and the nonlinear betatron tune (rotation

number) as a function of amplitude. We also provide the expression for

the approximated single particle emittance of the beam (the phase space

area occupied by particles). This work underscores the importance of us-

ing integrable systems to accurately model complex nonlinear interactions

under certain conditions, reinforcing the relevance of such models in both

theoretical research and practical applications.
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Thank you for your attention.

Questions?
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