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1.1 Hénon map

QUARTERLY OF APPLIED MATHEMATICS

Vol. XXVII OCTOBER 1969 No. 3

NUMERICAL STUDY OF QUADRATIC AREA-PRESERVING MAPPINGS*

BY

M. HENON

Entire Cremona transformation with second degree polynomials

x' = &ox + &y + &0x? + E1xy + En2y?

y' = Ciox + Gory + Ga0x? + C11xy + Cooy?
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Example: Thin sextupole

Consider simple 1D accelerator lattice consisting of linear optics el-
ements (drift spaces, dipoles, and quadrupoles)

M - x/_ cos® + a sin® B sin® X
x| —v sin® cos® —asind| x|’

where ¢ = f Ao = = 271y, followed by a single thin sextupole lens:

e [ =[5 5= e

x+x+at+f+y+®+S—"[fy—a?=1]

= 4 parameters + 2 initial conditions
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Hénon vs McMillan forms of the map

Hénon form of the map, F(x) = x?

x'=xcos® — [y — F(x)]sin®

y'=xsin® + [y — F(x)] cos ®

g=xcos®+ysind
T:

p =X,

‘f(q) =2gq cos¢+sin¢F(q)‘.

McMillan form of the map, f(q) = aq + g°
qg=p
p'=—q+f(p)
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1.2 Symmetric McMillan map

Form of the map

Q=P By P? + Eo P + Zo

Fo(P) = — .
PoQrip), T TR PR AT

Invariant of motion

K[P, Q] = Ag P2 Q%> + By (P?’Q + P Q%)
+To (PP + Q%) +EgPQ+=o(P+ Q)+ Ko

Q1" Ag Bo To P?
— Q| -[IB B =o|-|P]|].
1 Mo =0 Kp 1
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“Normal” form and intrinsic variables

B#0: K2[p,q]l = Kolp,ql + (P*°q+pd°) +pp°q*, p=

A#£0: Kflp,ql=Kolp, gl +r(p’a+pd®) + p?¢?, r=

Kolp,q] =p* —apq+q°.
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2. Perturbation theory

m The one-turn map of 1D accelerator lattice with thin
nonlinear lens can be brought to form:

q =p
p'=—q+f(p), fep)=aep+be*p> +ce3p> +....
m Looking for an approximate invariant:
K" = Ko+eKi+Kat. .. 4+e"Kn - K'M—g) = ("),
where ICp, are homogeneous polynomials of degree (m + 2):

eb b? c
K® = Kqlp, Q]—m (P a+pq°)+€ [3(3‘*‘1) - a] ?q°.
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Up to a second order (") [p, g] matches McMillan map

A b?

e ala+1)

B b A

< D v _
a’ e a+1’ p_BZ'

Symmetric McMillan Map:

Bqg?—agq
flq=———%———
(a) Ag?+Bg+1

Cc a) — 2
b( (i;i])-) b)q4+0(q5)

—aq+bg?+cq+
Generic thin lens:

f(q)=aq+bg*+cq®+dq*+0O(q°)
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Example: Quadratic Hénon map, f(q) = aq + ¢°

The corresponding second-order approximate invariant is:

PPq+pq® | pq°
a+1 a(a+1)’

ag®+a*(a+1)g

g>—aq+a(a+1)

g() Llp,ql = Kolp, q] —

=aq+q +0(q"),

fox-2(q) =

with its normal form given by:

2
gxnz[P’ q] = Kolp, gl + P°a + PG + pn P°¢°,

a+1 2cos2mug] +1

=" = 2 cos[2 w vp]

Tim Zolkin Understanding Sextupole: Part Il



Atlas of intrinsic parameters

1 1 3
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Sextupole and Octupole

-04-02 0 02 04 4o -08 -04 0 04 084p -04-02 0 02 04 go -04 -02 0 02 04 go
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Hénon Stability Diagram
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3. Comparison of stability diagrams

-1-12 0
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3.1 Integer resonance, vy = 0

dgv = 0 (SX-2) 0.1

1.25 1.5 1.75 2 qa 1.25 1.5 1.75 2 q
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Integer resonance, 1y =0

Comparing fixed points

Hénon:2_a7 Sx_2_33—\/3(832+a—16)

un un - 4

we see the accuracy of the model

Henon _ ¢8X2 — 1513 1 0(618), drg = (2 — a).
d CHenon d CSX -2
= =—1.
da drp=0 da 6rp=0

However, the SX-2 model also provides a linear estimate for the
lower boundary (separatrix location):

d CSX_Z

sep

da

drp=0
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3.2 Half-integer resonance, vy = 1/2

2 64 + 78a+ 24 2%+ a3
T (Céx)2> =

™ (Gthen) = 14=a(a—4),

a(a+1)
2) 2)
Vo ~0.148 =~0.1 0 Yo 0.5
0.5
0.4
0.4r
0.3
03
0.2
0.2r
0.1
0.1
2.4 —22 -2 a -22 =215 =21 =205 -2 g4

7'( (2) ) 77-< é?()_2) == —45r12/2+0(5rf’/2), 6r1/2 — a+2

Hénon
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Half-integer resonance, vy = 1/2

Both derivatives tend to infinity at r;, = 0:

d CIE|2e)non — d Cé?()—Z = 00
da da '
(5!’1/2:0 6!’1/220

Thus, we can invert the dependence C%)(a) to compare the terminal

values of parameter a

. 4 @ ¢ q*
Hénon 5
= e — = —2 —_ _—— — O R
i 17, > T4 g to@)
2 3 4
a3%2 =—2-T+ T+ 0@
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Observation #1. The region where SX-2 approximation holds
aligns with the stability diagram'’s areas that lack significant
mode-locking. In this area, higher-order resonances minimally
overlap, and stability is governed by the position of the unstable
fixed point.

Observation #2. Similar to the case of integer resonance, we
identify two regions of parameter accuracy: “high” and “medium.”
In the high-accuracy region, where the rotation number for the
2-cycle in the Hénon map is l/c()z) € (0.1,0], both the unstable fixed

point at the origin and g§§3 provide good estimates for the
mode-locked area. Further from the resonance, where

v(()2) € (0.148,0.1], gs(ﬁg maintains about 15% accuracy, while the
fixed point at the origin diverges from the boundary of the
mode-locked region. Beyond l/(()2) > 0.148, most invariant tori
associated with orbits around the figure-8 separatrix are destroyed,
making the application of perturbation theory at the origin
questionable.
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Yo

3.3 Third-integer resonance, vy = 1/3
1/3 ~0.29 ]

1/3

~0.29

Yo 205

04

03

0.2
0.1
d CSX 2

dCSXZ

~Ssep

_ _22 s—3
da
(5!‘1/3:0

[m]

=



3.4 Resonance vy = 1/4
026 02525 0.24 vo
q

026 0252% 024 Yo _05

0.2
0.1
0
-1/8 1/8 a
(4) q° SX-2 2 3
= O = — (9 .
a il - +q+0(q") a; q°+0(q”)
RON M +2-\q*+4q3 +4q°+4
“_

4 8+O( 4.

=

4
- q
+
q(q+2)



Observation #3. Interestingly, both mappings exhibit an orbit
where 0qv = 0 which appears for a < —1/2: solid white for the
Hénon map and dashed black/white for the SX-2 model. In the
chaotic case, this structure disappears, giving rise to a pair of
unstable and stable 3-cycles. In the integrable McMillan SX-2
map, however, it vanishes precisely at the vy = 1/3.

Observation #4. Within the region v € (0.25, ~ 0.252), before
the islands separate from the area around the origin, the
homoclinic orbit in the SX-2 model provides a fairly accurate
estimate along the second symmetry line.
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4. Accelerator lattice & thin sextupole (Floquet variables)

0.1 0.2 0.3 04 Vo
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Mid-range amplitudes
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This article presents a comprehensive study of the most general symmetric
McMillan map, emphasizing its role as a universal model for understand-
ing nonlinear oscillatory systems, particularly symplectic/area-preserving
mappings of the plane in standard form with typical force functions. By
identifying only two irreducible parameters the linearized rotation number
at the fixed point and the coefficient representing the ratio of nonlinear
terms in the biquadratic invariant the McMillan map is shown to be both
relatively simple and compact, yet highly accurate as an integrable approx-
imation for a broad class of standard-form mappings, especially near main
resonances. Through an in-depth analysis of the maps intrinsic parame-
ters, we provide a complete solution to the mapping equations and classify
regimes of stable motion. This general model offers analytical expressions
for the nonlinear tune shift, rotation number, and action-angle variables,
and, also serves as a systematic approach to understanding the qualitative
behavior of nonlinear systems under various parameter settings.
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In the second part of the study, we focus on specific applications of the sym-
metric McMillan map to model chaotic systems, specifically the quadratic
Hénon map and accelerator lattices with thin sextupole magnet. By es-
tablishing a connection between these systems, we demonstrate how the
McMillan map extends the linear Courant-Snyder formalism, enabling pre-
dictions of dynamic aperture and the nonlinear betatron tune (rotation
number) as a function of amplitude. We also provide the expression for
the approximated single particle emittance of the beam (the phase space
area occupied by particles). This work underscores the importance of us-
ing integrable systems to accurately model complex nonlinear interactions
under certain conditions, reinforcing the relevance of such models in both
theoretical research and practical applications.
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