LOW ENERGY NEUTRINO CALIBRATION / RECONSTRUCTION

Sergio Manthey Corchado

Motivation

Charge Calibration for LowE Events:

- Find appropriate **calibration factor** for charge to particle energy.
- Current hits follow **wirecell's standard** workflow which is **not optimized for low energy** interactions (discussion with wirecell team ongoing).
- With current settings: ~0.5 MeV threshold (1.2 MeV for > 90% eff.) and ~10% energy resolution > 5 MeV

Neutrino CC Signal Reconstruction:

- Try to recover info. from deex. gamma blips.
- Background limits reconstruction algorithms both in terms of clustering and resolution.

Productions

Using dune10kt_1x2x6 standard workflow + <u>SolarNuAna</u>.

• **Productions**:

1. Flat NuE CC 4-30 MeV <u>fcl.</u> homogeneous across detector producing a main electron track & deex. gammas (+ others).

- 2. Flat NuE CC 4-30 MeV + full <u>centralAPA</u> background production.
- 3. Cavern Neutron Production only (high statistics).

True Particle Spectrum

Neutrino and Electron Energy Distribution

- Due to the process of charged current, the flat neutrino spectrum leads to an uneven electron distribution in energy.
- Distribution favours lower energy statistics.
- All values are calculated per bin avoiding spectral bias.

Electron Clustering and Calibration Factor Definition.

Low Energy Clustering

- Reconstructed wirecell hits: col. plane + ind.
 plane matching (at least 1).
- Matched col hits grouped into clusters according to time & wire proximity (25 tick & 3 channels) ensuring cluster purity.
- Clusters divided into "Primary" and "Adjacent" (R adj cl. < 1m & charge adj. < charge primary).

- Detection Efficiency: Probability of finding at least 1 primary cluster per event.
- Important to look for low hit multiplicity in the context of low energy interactions.

Primary Cluster Completeness

- Electron Charge Completeness (fraction charge in primary / charge in total cl.).
- **2 OM separation** between samples with max. completeness and incomplete distributions.

Electron Charge Drift Correction

OF CIENCI

- Select primary clusters for events < 20 MeV (w/o nuclei emission).
- Distribution is non-Gaussian. Need to understand tail populations.

Electron Charge Drift Corrected

- Correcting for lifetime (9.06 ms) returns "Corrected Charge" variable.
- Separation wrt. larsoft configured lifetime of 10 ms attributed to border effects.

Over/Under Corrected Clusters

- Underestimated charge reconstruction clearly matched to APA borders.
- Overestimated charge reconstruction less intuitive (see next slide).

Over/Under Corrected Clusters

- Lower energy neutrinos more likely to overestimate charge. Possible threshold effects? Less secondary production, increasing visible energy?
- Conversion of electron/gamma deposited charge not identical.

Correction Factor vs NHits

- Number of hits is quite low. For 1 MeV electron only ~1Hit on average
- Use **effective correction factor** from electron charge and calibrate clustered data at a later stage.

Electron Energy Reconstruction

• Reconstruction of electron sample. Reconstruction method slightly biased towards lower energy due to secondary interactions at higher values.

Electron Cluster Reconstruction

Reco Cluster - Electron Charge Calibration

- Calibrate cluster energy to compensate use of **correction factor** from electron charge.
- Need to think about sample weighting. Probably better to weight original spectrum to solar CS.

Electron Energy Reconstruction

• Compute RMS to estimate low energy electron resolution.

*Electron Charge is collected from all electron clusters (primary + adj.) using truth information.

1200

800

600

400

200

Energy Reconstruction: Microboone Comparison

3000F **Position resolution** 2500 $\sigma_{\rm x} \sim 0.18$ cm 2000 $\sigma_v \sim 0.32$ cm 1500 $\sigma_{z} \sim 0.20$ cm 1000 500 -15 -1 -05 0 **Energy resolution** $\sigma_{\rm F} \sim 10\%$ for > 1.8 MeV efficiency $\sigma_{\rm F} \sim 20-30\%$ at 1MeV 0.9 (need more stats)

Energy threshold > 95% above 1.3 MeV >50% above 0.8 MeV (0.6 MeV for 2D hits on collection plane)

Energy Reconstruction: Microboone Comparison

- Blip reconstruction delivers better results in microboone simulation.
- MicrobooNE has shorter wires and narrower pitch (3 mm).

Energy Reconstruction: Microboone Comparison

• MicrobooNE implemented lowe changes in wirecell allowing better energy resolution and threshold.

MicrobooNE Comparison

• Showing nice low energy result from MicrobooNE. Is this possible in DUNE?

	MicrobooNE Low-Thld	MicrobooNE Standard	DUNE
Detection Threshold	0.2 MeV	0.3 MeV	0.5 MeV
Threshold 80% eff.	0.8 MeV	1 MeV	1 MeV
Energy <u>Resolution</u>	8%		10%

Neutrino Signal and Background Comparison.

Neutrino Energy Reconstruction

y Tecnológicas

Energy Reconstruction Algorithms

- Developing and comparing 3 methods for neutrino energy reconstruction:
 - TotalEnergy: Add to the energy of the main cluster (electron candidate), the energy of the adj.
 clusters (gamma candidates) within 1m radius.
 - SelectedEnergy: Same as prev. but select a subset of adj. clusters based on cuts wrt background cluster distributions (here considering clusters closer >20cm, but other cuts could be applied see <u>slide</u>).
 - SolarEnergy: Reduce the problem of adj. clusters to an effective offset of 4.47 or 6.41 MeV of energy, compensating for Q value (1.5 MeV), the electron mass (0.5 MeV), prominent gamma lines (see <u>slide</u>) and effective average losses of CC process (see <u>slide</u>).
- Additionally, in all cases, I apply a final linear correction that I extract from the plot on <u>slide</u>.

Neutrino Signal: SolarReco Strategy

• Use ML (BDT) model to discriminate between **Upper** and **Lower** electron populations in energy offset and compute effective neutrino energy.

SolarReco: ML Feature Importance

- ML model takes as an input primary cluster and adj. cluster main variables.
- Most important are total adj. cluster and max. adj. cluster energies.

Smearing Matrices for ML Samples

• Check energy reconstruction of both samples.

Neutrino Energy: Smearing

Additional Neutrino Energy Calibration Computed from Smearing:

- Match neutrino energies by correction for slope and intercept of the distributions.
- Compensate for Q-value (1.5 MeV), electron mass (0.5 MeV) and additional effects.

Neutrino Energy Reconstruction

- Showing signal Energy Reconstruction.
- As expected we identify worsening of resolution for higher energies due to secondary productions and nuclei emission.

Neutrino Energy Reconstruction Examples

- Signal + Bkg Energy Reconstruction.
- Background influence on signal reconstruction is noticeable*.

Neutrino Energy Resolution (RMS)

- Different calibration methods result in similar energy resolution for signal samples.
- In the case of signal + background, the "TotalReco" algo. clearly worsens low energy resolution.

Resolution Comparison

Tecnológica:

• Low energy reconstruction (**this work**) leads to better results. Need to understand losses compared to TDR samples at higher energy.

Reconstructed Neutron Capture Energy

- Blindly applying reconstruction to neutron capture sample.
- Both primary cl. energy and reconstructed energy lead to high values.
- SolarReco is the best algorithm to mitigate impact of high reconstructed energies.

Summary

- Implemented low energy calibration for CC neutrino events.
- Showed updated results for energy resolution and detection threshold.
- Developed different strategies for neutrino energy reconstruction:
 - **SolarReco** being a ML approach to add a specific maximum energy to the primary cluster given adjacent topological information.
 - Proven to be the most reliable in the context of full background and specifically for Neutron
 Captures (most challenging for the solar neutrino analysis).
- Presented work in progress of PDS matching effects on energy reconstruction and fiducialization for the example of neutron captures.

Next Steps

- Evaluate charge calibration based on **pure electron sample** and understand impact of sample weighting (use flat spectrum or solar?).
- **Updated ML SolarReco** algorithm **from BDT to CNN** returning a continuous adj. cluster energy estimator.
- Further investigate neutron signal. Current simulation/calibration seems to overestimate contribution. Does **gammas energy need separate calibration**?
- Evaluate official production.
- Writing technote about solar neutrino analysis in DUNE.

Backup

Bonus Slide: PDS Matching & Fiducialization

- Currently working on evaluating PDS matching scenarios while low energy flash is being optimized:
 - **0%** full random X assignment.
 - 50% assignas half of the reco clusters random a X reconstruction.
 - 100% assumes optimal X reconstruction.
- Assumptions affect both energy resolution and fiducialization.

NeutronsInCavernwall Reco Energy PDS Matching

Primary Cluster Completeness

- Electron Charge Completeness (fraction charge in primary / charge in total cl.).
- Increases with #hits, best to consider +3Hit clusters for physics analysis.

Primary Cluster #Hits

Ciemat

MINISTERIO

- For reference, #hits of primary cluster for different true neutrino energies.
 - From 6 to 20 MeV the peak of #hits increases from 2 to 6

continuously.

Adjacent Clusters #Hits

- #AdjClusters increases with neutrino energy but all of them are typically 1 hit.
- Probability of electron generating adj. clusters grows 2.5 OM from 6 to 20 MeV.

Electron Cluster Reconstruction

- See collected charge per electron energy vs detector coordinates.
- Ideal calibration factor affected by events occurring between APA borders.

ML Selection Algorithm

Neutrino Energy Reconstruction

• Resulting signal event distributions can be plotted to check consistency.

True Neutron Spectrum

NeutronsInCavernwall Energy Comparison

Reconstructed Background Energy

• Comparing backtracked cluster energy and reco energy.

Intrinsic LAr LowRate Backgrounds

y Tecnológicas

lar_lowRate Energy Comparison

Reconstructed Background Energies

Reconstructed Background Energies

Electron Cluster Correction Check

• Applying truth correction factor to primary clusters results in average correction factor shift.

Electron Threshold: Experiment Comparison

Electron Threshold: Experiment Comparison

Background Adj. Cl Distributions

Background Adj. Cl. Distributions: Neutrons

y Tecnológicas

Adj. Clusters - Signal vs Background hd_1x2x6

y Tecnológicas

Adj. Clusters - Signal vs Background hd_1x2x6

TDR RESOLUTION STUDIES

