FD Sim/Reco 18/11/2024

Discussion on "Detector" Systematics

Alessandra Tonazzo (APC Paris)

based on discussion with Tiago Alves (Imperial College London) et al.

The starting point

Recent studies have provided detailed parameterisations of flux systematics, a lot of work is ongoing on neutrino interactions, but for "detector" systematics there has been ~no update w.r.t. TDR (or even CDR...)

Some talks that addressed this:

Chris Marshall "Energy uncertainties in LBL analysis" on 23/11/2023 at <u>Calibration WG meeting</u>

Tiago Alves "Detector systematics" on 01/11/2024 <u>at joint LBL + ND Sim/Reco meeting</u>

FD in the "TDR" Analysis (from Chris' talk)

• Energy is purely calorimetric, there is no attempt to do particle ID (besides the lepton), correct for recombination, etc.

• There are no uncertainties in the reconstruction or event selection

 "Detector" uncertainties are implemented with a 19-parameter model based on other experiments

FD in the "TDR" Analysis: can we do better?

• Energy is purely calorimetric, there is no attempt to do particle ID (besides the lepton), correct for recombination, etc.

• There are no uncertainties in the reconstruction or event selection

 "Detector" uncertainties are implemented with a 19-parameter model based on other experiments A lot of work is already ongoing to improve the reconstruction incomplete list :

- muon momentum (Henrique, Anselmo)
- electron shower energy (Ginevra)
- neutrino energy (Henrique, Pierre, Marcelo)
- neutrino direction for atmospherics (Pierre)
- ...

Some discussion and new activity is probably needed

cfr joint LBL + ND Sim/Reco meetings "aimed at developing ND analyses and systematic uncertainties towards the ND TDR and for future LBL sensitivity updates"

"Detector" uncertainties in TDR analysis

 Energy scale : 	$E_{rec}' = E_{rec} \times (p_0 + p_1 \sqrt{E_{rec}} + \frac{p_2}{\sqrt{E_{rec}}})$	Particle type	Allowed variation		
	$\sqrt{L_{rec}}$		p_0	p_1	p_2
 some dependence on <u>energy</u> 3 parameters per particle type, varied at fit time 		all (except muons)	2%	1%	2%
		μ (range)	2%	2%	2%
	Parameter values are educated guesses from other	μ (curvature)	1%	1%	1%
	experiments, calorimetric (NOvA, MINERVA) or	$\mathbf{p},\ \pi^{\pm}$	5%	5%	5%
	LArTPCs (LArIAT, MicroBooNE, ArgoNeuT)	${\rm e},\gamma,\pi^0$	2.5%	2.5%	2.5%
L		n	20%	30%	30%
		175			

- Energy resolution: uncertainties on the width of the measured energy
 - 4 parameters (for μ, charged had., E.M., n)

• Direction: nothing

• not used in LBL analysis, but will be relevant for atmospherics!

Workflow (Tiago for ND)

- the Sim/Reco group should play a role mainly for "Physical Effects""
- but also for "fit time parameters"
 - to decide which effects to include individually or a grouped way
 - and to make sure the necessary variables are available at fit time

Questions for discussion in the FD Sim/Reco group

- Which physical effects should be considered?
 - some <u>detector effects</u> are already discussed, more (containment, E non-uniformity, gaps, space charge..) or less (channel efficiencies, field response, short track dE/dx..) extensively
 - should also add effects from selection and reconstruction
- How to study them?
 - apply effects to existing reco files? run dedicated simulations? use interpolations (e.g. SnowStorm)? ...
- What is the size of the associated uncertainties?
 - to be (re)discussed with Calibration WG for <u>detector effects</u>
 - and also with ProtoDUNE DRA for <u>selection</u> and <u>reconstruction</u>
- Which physical variables do they depend on?
 - parametrize uncertainties also as a function of position? direction? <u>muons</u>
- Are the necessary variables stored in the CAF files for use at osc. fit time?

example @ND: Tiago is studying the dependence on position of TMS momentum reco for non-contained

Tiago's list for ND

Conclusions

- Should we reconsider the systematics related to <u>detector and reconstruction</u> at the FD, to update the TDR parameterisations in view of future oscillation analyses?
- Discussion is needed within the FD Sim/Reco group on "how" and "who"
- Joint effort with other WGs
 - size of uncertainties \rightarrow Calibration, ProtoDUNE
 - study of effects \rightarrow ND Sim/Reco
 - impact on oscillation analysis \rightarrow LBL/AMA
 - implementation in fit framework \rightarrow Mach3

- Regular joint meetings are already organised
- Should we join them, or think of something similar for the FD?