Energy reconstruction using PIDA

Henrique Souza for the APC group

18/11/2024

Context

Pros: Very simple and direct approach

Cons:

- 1. Longest track is not always muon
- 2. If MCS fails, the mass of the muon is not taken into account
- 3. Does not use PID capability of LArTPC

Context

Cons:

- 1. Longest track is not always muon
- 2. If MCS fails, the mass of the muon is not taken into account
- 3. Does not use PID capability of LArTPC

In this case, the mass of the muon is not added. I changed that Full method description: https://iopscience.iop.org/article/10.1088/1748-0221/8/08/P08005

Main points:

- Utilize the theoretical power-law dependence of dEdx on the particle velocity as it reaches the end of its travel.
- Weak dependence on b

$$A_i = (dE/dx)_{calo,i} R_i^{0.42}$$

• Average of Ai is used for last 30 cm of track

$$(dE/dx)_{hyp} = A R^b$$

Particle	A	b			
	MeV/cm ^{1-b}				
pion	8	-0.37			
kaon	14	-0.41			
proton	17	-0.42			
deuteron	25	-0.43			

Full method description: https://iopscience.iop.org/article/10.1088/1748-0221/8/08/P08005

Main points:

- Utilize the theoretical power-law dependence of dEdx on the particle velocity as it reaches the end of its travel.
- Weak dependence on b

$$A_i = (dE/dx)_{calo,i} R_i^{0.42}$$

• Average of Ai is used for last 30 cm of track

$$(dE/dx)_{hyp} = A R^b$$

PIDA - My changes

- Changed from Median to Mean
- Avoid values in which dE/dx > 1000
- Avoid values of PIDA > 30 (before mean)

• Better separations protons <-> muons,pions

Metrics

They are all calculated in each plane view (U, V and W).

Using only "W" plane does not work for atmospheric events: not in beam direction

G4 matching can sometimes be fail ! Planes can give different results. Using the plane with most hits seemed better than taking all planes together.

Specially for PIDA, taking the plane with most (valid) hits make a good difference.

Metrics

- My method was based on trial and error.
- For muon and proton selection, I tried to maximize purity and completeness, focusing on purity.
- Same for pions at the beginning (changed later and got better results)
- Some things I have noticed: (1) cut can be applied to track length; (2) can search for muons that are reconstructed as showers (PFP PdgCode=11) depending on all hits calorimetry

*Only analysing events in which 1 PFP is tagged as muon and has a track associated. I am skipping ~6% of the dataset like this.

Muon selection

Muon selection

Note:

Total events: 472153

of events with **no muon reconstructed** (in which PFP has a track): 30007 (6.4%)

This number changes if I ask that the reconstructed muon has a purity x completeness bigger than X

PFP PnC > 0.25: 33227 (7.0%) PFP PnC > 0.64: 63258 (13.3%) PFP PnC > 0.81: 105574 (22.3%)

In backup: plot of difference for different cuts of PnC

Proton selection

As protons have a good PIDA score, cutting was easy.

- Different thresholds for protons reconstructed as track or shower increases purity
- Cuts in calorimetry and momentum by range also improves purity

Proton selection

Note:

Purity and (specially) efficiency increases when analysing only tracks with PxC > X

This is caused by particles that are pointed as being a proton, but with a poor PxC

Pion selection

- For pions, I could not find a good parameter that would keep a good purity with good efficiency. If I increased purity, efficiency drops a lot

Pion selection

Proton and Pion selection

High purity for protons -> higher number of pions

rotons	0.94	0.06	0.00	0.00	0.00	0.00	0.00	-	pions	0	-0.85	0.12	0.03	0.01	0.00	0.00	0.00	-0.8
d 10 # 0	-0.29	0.68	0.03	0.00	0.00	0.00	0.00	-0.8	ue # of	1	0.31	0.41	0.20	0.06	0.02	0.01	0.00	- 0.7
	0.11	0.43	0.42	0.03	0.00	0.00	0.00	-0.6	Т	2	0.10	0.26	0.34	0.18	0.07	0.03	0.01	-0.6
3	0.04	0.22	0.42	0.28	0.04	0.01	0.00			3	0.03	0.12	0.26	0.28	0.17	0.08	0.05	- 0.4
2	0.01	0.10	0.28	0.37	0.20	0.03	0.01	- 0.4		4	0.01	0.05	0.14	0.25	0.24	0.16	0.16	- 0.3
5	5-0.00	0.04	0.15	0.30	0.31	0.15	0.04	- 0.2		5	0.00	0.02	0.07	0.14	0.22	0.22	0.32	-0.2
>=6	6-0.00	0.01	0.05	0.13	0.22	0.24	0.35		>	-=6	0.00	0.00	0.02	0.05	0.11	0.15	0.67	- 0.1
	0	1	2	3 Pr	4 redicted	5 d # of p	>=6 protons	0.0			0	1	2	3	4 Predic	5 ted # o	>=6 f pions	

To compare between the two methods:

- When track tagged as muon is contained
- When track tagged as muon is not contained

To compare between the two methods:

- When track tagged as muon is contained
- When track tagged as muon is not contained

To compare between the two methods:

- When track tagged as muon is contained
- When track tagged as muon is not contained

First method using PIDA

Pros:

- Uses pid :)
- If rescaled, resolution is better (check backup)

Cons:

- Needs a lot of selections that will change depending on simulation, reconstruction and detector geometry.
- ... others

Next steps:

- Any suggestions? -> try/add
- Implement similar approach for nue
- Implement methods in dunereco

What can/need to be improved:

- Maybe pion selection for low energies can be improved
- Energy for pions can be improved.
 - Use proper CSDA "table"
 - Tune MCS for not contained
 - Any "Shower PID" ?

Muon selection improvement when asking minimum PxC over the muon

- Changes in simple approach

To compare between the two methods:

- All events

To compare between the two methods:

- Hadronic energy

What if we try to rescale: (Esimple (con.) ^ 1.05)*1.3 (Esimple (not cont.) ^1.2)*1.3

(Ecomplex (con.))*1.14 (Ecomplex (not cont.) ^1.15)*1.18

