
CalVision: Crystal Calorimeter Adding Silicone Cookies Nov 25, 2024

General Information

- Material added:
 - 1. Silicone cookies between crystal and the photodetectors (at the two ends)
 - 2. Polystyrene for the mat between the two crystals
- Geometry: exaggerated dimension (50 mm) for silicone cookies (blue blocks), photodetectors (red blocks), and Polystyrene for the material between the two crystal segmentation (blocks)
- Used array of 5 PbWO4 crystals. For the analysis:
 - photodetector thickness = 0.1 mm (as in the xml file);
 - silicone cookies = 1 mm thickness (should be asked)
 - Polystyrene mat between the two crystals = 0.1 mm (should be asked)

Files to Modify to add Cookies

- Files to modify to add the silicone cookies:
 - 1. XML files:
 - A. Add material name, matrix properties and segmentation in DRConly.xml;

 - C. Modify <u>slice material number</u> in **SCEPCAL_DRCrystal-twoseg.xml**
 - **D.** Add <u>cookie</u> and <u>MiddleMat</u> vis in **SCEPCAL_ECAL.Xml**
 - 2. Resolution.C: <u>mapped</u> cookies and changed <u>ecalhit</u> assignment

B. Define cookie thickness, and material for the MiddleMat in SCEPCALCONSTANTS.xml

ddsim Simulation Spew

Added Air and material between the two crystals with a random thickness

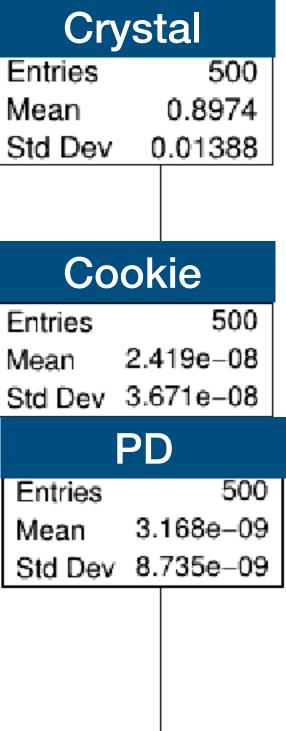
DRCrys layer	0xcaf1920	, repeat 0 half	thickness = 10.125, z = 0.	01
slice =	1 , half	thickness = 0.005,	material: killMedia1,	placed at -10.12
slice =	2 , half	thickness = 0.05,	<pre>material: E_Silicone,</pre>	placed at -10.065
slice =	3 , half	thickness = 2.5,	<pre>material: E_PbW04,</pre>	placed at -7.515
slice =	4 , half	thickness = 0.005,	material: Air,	placed at -5.01
slice =	5 , half	thickness = 0.005,	<pre>material: DR_Polystyrene,</pre>	placed at -5
slice =	6 , half	thickness = 0.005,	material: Air,	placed at -4.99
slice =	7 , half	thickness = 7.5,	<pre>material: E_PbW04,</pre>	placed at 2.515
slice =	8 , half	thickness = 0.05,	<pre>material: E_Silicone,</pre>	placed at 10.065
slice =	9 , half	thickness = 0.005,	material: killMedia1,	placed at 10.12

Resolution.C Spew

hits Edeposit=9.94437, beamE=10: sum EDeposit/beamE=0.994437

cal total energy deposit 8.3436 cal EM total energy deposit 7.23699

air=1.11826e-05, ecalPD=2.15416e-07, ecalcookie=1.68956e-06, crys=8.34187 edgeE=1.60077


ecal: totncer=7235.27, totnscint=8341.87

Energy deposition in various number of detector in a random event:

Running Resolution.C

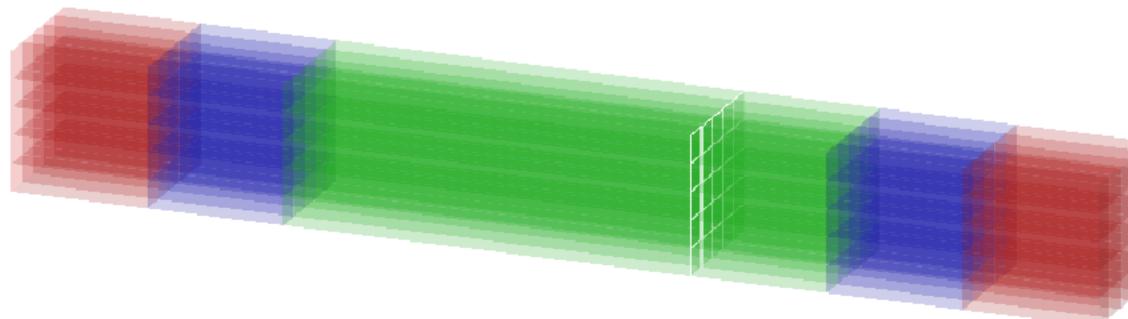
- Histogram of energy deposited in silicone cookies and total energy deposited in PbWO4 crystals
- 500 events with 10GeV electron and pion
- Running the code with gendet==3

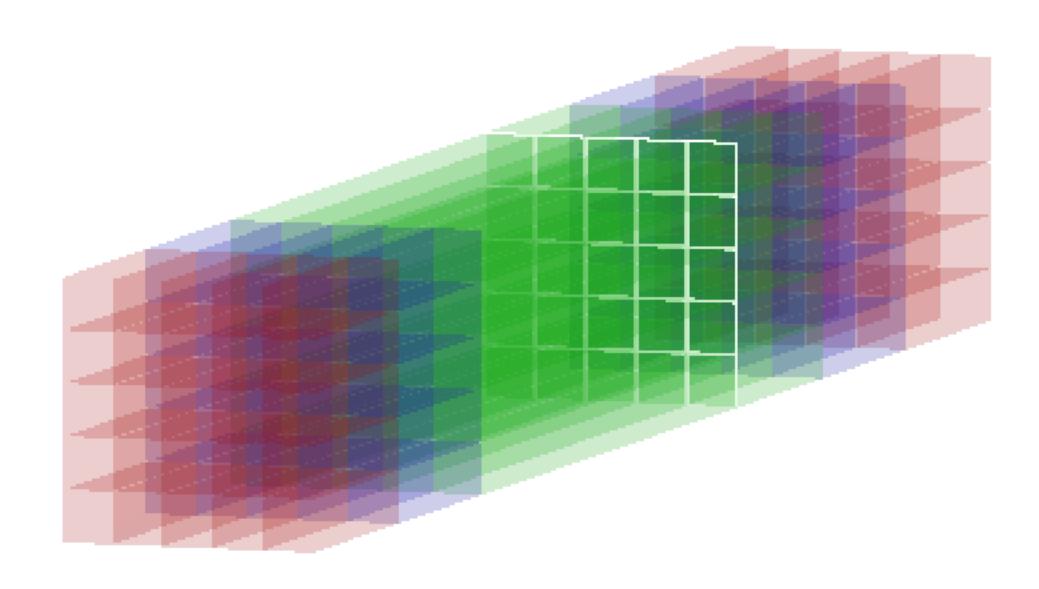
e-: sum(crysE)/beamE 240 g Entries Mean 220 Std Dev 200 180 160 Entries Mean 140 120 100 Entries Mean 80 60 4020 0.2 0.6 0.4 0.8 1.2

Questions and Possible Next Step

Questions:

- 1. What should be the type and thickness for the material for the MiddleMat?
- 2. What should be used for the cookie's thickness?


Possible next step:


Electron Resolution as a function of the MiddleMat material 1.

Backup Slides

Old VIS; without material between two crystals

- Adding Silicone cookies between crystal calorimeter and the photodetectors
- Geometry in the figure below: exaggerated dimension (50 mm) for silicone cookies (blue blocks) and photodetectors (red blocks)
- For visualization purposes array of 5 crystals are shown in the figure below
- For the real analysis:
 - photodetector thickness = 0.1 mm (as in the xml file);
 - silicone cookies = 1 mm thickness for for now (should be asked)

