

Pulse Shape Discrimination with 2x2 Data

Tom Sonius

Introduction

• Excimer formation

- Potential well necessary to form excimer occurs for two of the atomic triplet states
 - ${}^{1}S_{0} + {}^{3}P_{1}$ (Singlet excimer, S = 0): Fast decay (~ 7 ns)
 - ${}^{1}S_{0} + {}^{3}P_{2}$ (Triplet excimer, S = 1): Slow decay (~1.45 µs)
 - Decay through photon emission: Broad peak at 128nm
- Impact on Singlet-to-Triplet Ratio:
 - High LET (dE/dx): increases the proportion of singlet excimers.
 - Low LET (dE/dx): increases the proportion of triplet excimers.

configuration	state	energy $[eV]$
$[Ne](3s)^2(3p)^6$	${}^{1}S_{0}$	0.0
$[\mathrm{Ne}](3s)^2(3p)^5 \uparrow (4s) \downarrow \\ [\mathrm{Ne}](3s)^2(3p)^6 \uparrow (4s) \uparrow$	${}^{1}P_{1}$ ${}^{3}P_{0}$ ${}^{3}P_{1}$ ${}^{3}P_{2}$	$11.82 \\ 11.72 \\ 11.62 \\ 11.54$

Figure: Energy configuration of the four lowest energy states of Argon, from T. Pollmann's work. [1]

• What is PSD?

• Technique to distinguish particle types based on scintillation light pulse shapes.

• Underlying Principle:

- Different particles produce different ratios of singlet to triplet excimers.
- Key Parameters:
 - Decay constants: Time constants for singlet and triplet decay.
 - fprompt: Fraction of prompt light to total light.

fprompt Parameter

$$f_{\text{prompt}} = \frac{\int_{t_0}^{t_{cut}} I(t) dt}{\int_{t_0}^{t_{total}} I(t) dt}$$

- *I (t):* Scintillation intensity
- *t*₀: Start time of the signal.
- *t_{cut}*: Time defining the prompt window.
- *t_{total}: Total integration time.*

X X

Figure: Frpompt parameter versus detected photo electrons (PE), showing background populations. Taken from B. Lehnert's work for the DEAP-3600 Collaboration [2]

× × ×

DUN

Event Selection Criteria

- Baseline correction:
 - Subtract median waveform value

• Peak finder:

- Noise estimation:
 - 100 samples -> take 6x above std
- Prominence of 10%
- Single peaks
- Event Selection:
 - SNR:
 - 5x stronger than noise
 - More than 5% max value
 - Smooth rising edge:
 - No dips

MC (Minirun 5): Pulseshape

- **Prompt start:**
 - Below 10% peak
 - 1 tick before
- Prompt/total window
 - Arbitrarily chosen

MiniRun5_1E19_RHC.flow.0000055.FLOW.hdf5

MC (Minirun 5): Fprompt scatter plot

fprompt vs Energy for Module 1

#: Fraction of total light emitted from singlet state SINGLET_FRACTION = 0.3

2x2 Data: Channel Mapping

DUNE

2x2 Data: TPC Waveforms

mpd_run_hvramp_rctl_104_p130.FLOW.hdf5

Data assessment meeting

2x2 Data: fprompt calculation

- Baseline correction:
 - Subtract median waveform value
- Peak finder:
 - Noise estimation:
 - 100 samples -> take 6x above std
 - Prominence of 10%
 - Single peaks
- Event Selection:
 - SNR:

6/11/2024

- 5x stronger than noise
- More than 5% max value
- Smooth rising edge:
 - No dips

mpd_run_hvramp_rctl_104_p130.FLOW.hdf5

2x2 Data: Fprompt scatter plot

mpd_run_hvramp_rctl_104_p130.FLOW.hdf5

Data assessment meeting

2x2 Data: Scatter plot ROIs

2x2 Data: ROI Pulse Shapes

2x2 Data: ROI Pulse Shapes

Data assessment meeting

DUNE

2x2 Data: ROI Pulse Shapes

Conclusion

- Clear pulse shapes fprompt calculations can be applied
- *Fprompt two bands observed (at low energy)*
 - Likely correlates with nuclear and electron recoils

Next steps

- Identify waveforms with pileup extract event time + fprompt value of each interaction
- Optimizing the prompt and the total window time
- Apply energy & gain calibration and compare with own tests
- Fit the pulseshape to extract the Argon excimer decay times and time resolution (LAr purity test)

[1] T. Pollmann, "Pulse shape discrimination studies in a liquid argon scintillation detector," Max-Planck-Institut für Kernphysik, 2007.

[2] B. Lehnert, Backgrounds in the deap-3600 dark matter experiment, 2018.

Backup Slides

× × ×

Excitation Process

Process A (Excitation):

Incoming particle excites argon atom. Exciton formed.

Process B (Self-Trapping):

Exciton becomes self-trapped.

Process C (Excimer Formation):

- Exciton trapped in potential well
- Curves favor excimer formation (singlet or triplet state).

Process D (Emission):

Excimer decays, emitting 128 nm scintillation light.

Figure 3: The processes that lead to photon

emission, taken directly from T. Pollmann's work

Ionization Process

Process I (Ionization):

 \blacksquare Particle deposits ${\sim}10$ eV energy, ionizing argon atom

Process II (Recombination):

 Free electron recombines or excites nearby atom

Process III (Excimer Formation and Decay):

 Recombination forms excimer, emits 128 nm light

Spectrum:

Broad peak at 128 nm - unresolved rotational levels

Figure 4: The processes that lead to photon

emission, taken directly from T. Pollmann's work

Pulse Shape Components

Experiment:

- DEAP-3600 (Ar-39)
- Pulse shape characteristics

Fits:

- geometric effect + detector response
- intermediate (later recomb.)
- TPB late emission
- Afterpulsing (residual charge effects)

Simulation Labels

1: 'QES',	#	Quasi-elastic scattering
2: '1Kaon',	#	Single Kaon production
3: 'DIS',	#	Deep inelastic scattering
4: 'RES',	#	Resonant pion production
5: 'COH',	#	Coherent scattering
6: 'DFR',	#	Diffractive scattering
7: 'NuEEL',	#	Neutrino-electron elastic scattering
8: 'IMD',	#	Inverse muon decay
9: 'AMNuGamma',	#	Anomalous neutrino gamma
10: 'MEC',	#	Meson exchange current
11: 'CEvNS',	#	Coherent elastic neutrino-nucleus scattering
12: 'IBD',	#	Inverse beta decay
13: 'GLR',	#	Glashow resonance
14: 'IMDAnh',	#	Annihilation inverse muon decay
15: 'PhotonCOH',	#	Coherent photon production
16: 'PhotonRES',	#	Resonant photon production
17: '1Pion',	#	Single pion production
101: 'DMEL',	#	Dark Matter elastic scattering
102: 'DMDIS',	#	Dark Matter deep inelastic scattering
103: 'DME'	#	Dark Matter excitation