NP04 PDS LED-calibration

NP04 PDS operation meeting - 07 November 2024

1

Julio Ureña

Introduction

- On July 9, the first *standard* calibration data was taken for all 4 APAs and 3 different overvoltages/PDEs
- The data whose analysis results are presented in this presentation was acquired by Laura Pérez, Manuel Arroyave and Anselmo Cervera
- In total, >7 different calibration batches have been taken [1]. Only the first three have been analyzed.

2024/07/09	2024/07/26	2024/07/29-30	2024/08/13	2024/08/28	2024/09/14	2024/09/25
4 APAs, PDE scan: (0.4, 0.45, 0.5)	4 APAs, PDE scan: (0.4, 0.45, 0.5)	APAs 2-4, PDE scan: (0.4, 0.45, 0.5)	4 APAs, nominal PDE, V_gain scan: 0.9, 1.0, 1.1	4 APAs, nominal PDE	APAs 3 & 4, nominal PDE	APAs 2-4, PDE scan: (0.4, 0.45, 0.5)

- As of **2024/10/07** there are lots of LED runs acquired by Esteban C. including PDE- and Vgain-scans
- This analysis has been performed using Waffles [2, 3]

Julio Ureña - NP04 PDS operation meeting - 7 November 2024

From 2024/09/12 talk in Santa Fe CM See [6]

LED configurations See [4]

- The LED configuration format is (channel_mask, ticks_width, pulse_bias_percent_270nm)
- The third variable, which tunes the light intensity, is scanned
- As of batch 2, we are taking:
 - APA 1: 4 different LED configurations per PDE

2

- APA 2: 6 " " " " "
- APAs 3&4: 5 " " " "

channel mask = 1,

ticks width = 1

(3)

• It adds up to (4+6+5)x3 = 45 runs per calibration batch

(4+6)channel mask = 50, ticks width = 204 APAs 1 & 2 APAs 3 & 4 channel mask = 12, ticks width = 1

Julio Ureña - NP04 PDS operation meeting - 7 November 2024

(2)

"

4

Data processing and analysis

• One WaveformSet object per run is generated using /src/waffles/np04_analysis/LED_calibration/batch_pickle_generator.ipynb

• Ultimately, this notebook calls the HDF5 reader /src/waffles/input/raw hdf5 reader.py>WaveformSet from hdf5 file()

- For each batch,
 - runs are mapped to its LED-configurations via /src/waffles/np04_analysis/LED_calibration/calibration_batches/run_number_to_LED_configuration.py
 - LED-configurations are mapped to specific APA-channels via /src/waffles/np04_analysis/LED_calibration/calibration_batches/LED_configuration_to_channel.py
 - excluded channels are specified via /src/waffles/np04_analysis/LED_calibration/calibration_batches/excluded_channels.py
- For each waveform,
 - Its baseline is computed as the median of the points for time ticks in [0, 100]U[900, 1000]
 - \circ ~ The baseline is subtracted from the waveform prior to integration from time tick 125 to 165 ~
 - The code for these computations can be found in /waffles/src/waffles/data_classes/BasicWfAna.py> analyse()
- The set of integrals is histogrammed
- Each one of the first two peaks of the histogram are fit to a gaussian function (one gaussian per peak)
- Automatic identification and fit of the first two peaks is performed by /src/waffles/utils/fit_peaks/fit_peaks.py>fit_peaks_of_CalibrationHistogram()

Analysis example - APA 3, Channel 111-13

Julio Ureña - NP04 PDS operation meeting - 7 November 2024

6

2024/7/26 2024/7/29

Analysis example - APA 4, Channel 112-0

Julio Ureña - NP04 PDS operation meeting - 7 November 2024

7

Results (APA 2)

Gain per channel in APA 2 - Batch 1 (2024/7/9)

Results (APA 2)

Gain per channel in APA 2 - Batch 2 (2024/7/26)

Results (APA 2)

Gain per channel in APA 2 - Batch 3 (2024/7/29)

Results (APA 3)

Gain per channel in APA 3 - Batch 1 (2024/7/9)

Gain per channel in APA 3

Gain per channel in APA 3

Results (APA 3)

Gain per channel in APA 3 - Batch 2 (2024/7/26)

Gain per channel in APA 3

Gain per channel in APA 3

Results (APA 3)

Gain per channel in APA 3 - Batch 3 (2024/7/29)

Gain per channel in APA 3

Gain per channel in APA 3

Results (APA 4)

Gain per channel in APA 4 - Batch 1 (2024/7/9)

Gain per channel in APA 4

Gain per channel in APA 4

Results (APA 4)

Gain per channel in APA 4 - Batch 2 (2024/7/26)

Gain per channel in APA 4

Gain per channel in APA 4

Results (APA 4)

Gain per channel in APA 4 - Batch 3 (2024/7/29)

Gain per channel in APA 4

Gain per channel in APA 4

Results

- For each APA,
 - For each PDE,
 - For each channel,
 - compute the STD of the three gains (one per batch)
 - that's one sample within the given (APA, PDE)-histogram

Gain STD (over time)

Inaccessible data

- All of the data for calibration batch 1 is accessible
- In batch 2, excluding runs for APA 1, there are 2 unavailable runs:

run	batch number	date	pde	'affected' APAs	cause
28149	2	2024/07/26	0.4	(2,)	Rucio is not able to find data for this run
28177	2	2024/07/26	0.5	(3,4)	Rucio is not able to find data for this run

• In batch 3, there are 4 unavailable runs:

28485	3	2024/07/29-30	0.4	(2,)	Unable to open file [] File has been truncated
28487	3	2024/07/29-30	0.4	(2,)	Apparently the first datafile contains no waveform. Further inspection is needed.
28362	3	2024/07/29-30	0.4	(3,4)	Rucio is not able to find data for this run
28375	3	2024/07/29-30	0.5	(3,4)	Unable to open file [] File has been truncated

Summary

- Conclusions:
 - Results for APA 2 in batch 3 suggest that the PDE may have not been effectively changed among runs
 - Otherwise, gain over time seems to distribute with an STD which is smaller than 300 (integral a.u.)
- Question:
 - There is a number of Vgains (in [931, 3192]) for which there are (LED) PDE scans (40, 45 and 50%).
 - This data was acquired by Esteban C. from 2024/10/10 to 2024/10/18.
 - Among these, do we have a preference on which batches to analyse first for gain calibration?
- Next steps:
 - Analyse batches >3 for APAs 2, 3 and 4
 - \circ Analyse batches >=3 for APA 1
 - Analysing APA 1 data requires some more development in the HDF5 reader

Reference list

- [1] PDS Run list spread sheet https://docs.google.com/spreadsheets/d/14fpCjNZFnyq72wugfSGXdAcTrgFroA1Al2In7VeyZIY/edit?gid=1435679499#gid=1435679499
- [2] Waffles github https://github.com/DUNE/waffles
- [3] Waffles documentation webpage Laura P. Molina <u>https://waffles.readthedocs.io/en/latest/index.html</u>
- [4] LED channel mask generator Jairo Rodríguez <u>https://docs.google.com/spreadsheets/d/19meioB5ZXi4BVxlhS04Yg-nJeYS8p_bSmS_pvpNNEsU/edit?gid=0#gid=0</u>
- [5] Federico Galizzi's talk (29/08/2024)
 Single Photo- Electron characterization and noisy channels
 <u>https://indico.fnal.gov/event/66006/contributions/298862/attachments/181088/248257/20240839 PDHD spe noise.pdf</u>
- [6] Julio Ureña's talk (12/09/2024) LED calibration and Waffles <u>https://indico.fnal.gov/event/62283/contributions/299537/attachments/181479/248907/LED_calibration_and_Waffles.pdf</u>

Julio Ureña - NP04 PDS operation meeting - 7 November 2024

Backup

Julio Ureña - NP04 PDS operation meeting - 7 November 2024

21

Results (APA 2, SNRs)

Results (APA 2, SNRs)

Results (APA 2, SNRs)

Results (APA 3, SNRs)

Results (APA 3, SNRs)

Results (APA 3, SNRs)

Results (APA 4, SNRs)

2024/7/26 2024/7/29

I 2 L ŧ

2024/7/9

Results (APA 4, SNRs)

2024/7/26 2024/7/29

2

2024/7/9

29

Results (APA 4, SNRs)

2024/7/9

2024/7/26 2024/7/29

Results

- For each APA,
 - For each PDE,
 - For each channel,
 - compute the STD of the three SNRs (one per batch)
 - that's one sample within the given (APA, PDE)-histogram

SNR STD (over time)

Results (APA 2, batch 1, PDE 40%)

APA 2 - Runs [27921, 27898, 27899, 27900]

Results (APA 2, batch 1, PDE 45%)

APA 2 - Runs [27904, 27901, 27902, 27903]

APA 2 - Runs [27904, 27901, 27902, 27903]

Results (APA 2, batch 1, PDE 50%)

APA 2 - Runs [27905, 27906, 27907, 27908]

Results (APA 2, batch 2, PDE 40%)

APA 2 - Runs [28148, 28150, 28151, 28152, 28153]

160

160

APA 2 - Runs [28148, 28150, 28151, 28152, 28153]

Results (APA 2, batch 2, PDE 45%)

APA 2 - Runs [28160, 28161, 28162, 28163, 28164, 28159]

160

160

APA 2 - Runs [28160, 28161, 28162, 28163, 28164, 28159]

Results (APA 2, batch 2, PDE 50%)

APA 2 - Runs [28170, 28171, 28172, 28173, 28174, 28175]

Results (APA 2, batch 3, PDE 40%)

APA 2 - Runs [28488, 28481, 28483, 28486]

160

160

160

APA 2 - Runs [28488, 28481, 28483, 28486]

Results (APA 2, batch 3, PDE 45%)

APA 2 - Runs [28489, 28491, 28492, 28493, 28494, 28495]

160

160

APA 2 - Runs [28489, 28491, 28492, 28493, 28494, 28495]

Results (APA 2, batch 3, PDE 50%)

160

160

150 160

150 160

APA 2 - Runs [28496, 28497, 28498, 28499, 28500, 28501]

APA 2 - Runs [28496, 28497, 28498, 28499, 28500, 28501]

Results (APA 3, batch 1, PDE 40%)

APA 3 - Runs [27920, 27917, 27918, 27919]

Results (APA 3, batch 1, PDE 45%)

APA 3 - Runs [27913, 27914, 27915, 27916]

APA 3 - Runs [27913, 27914, 27915, 27916]

Results (APA 3, batch 1, PDE 50%)

APA 3 - Runs [27912, 27909, 27910, 27911]

APA 3 - Runs [27912, 27909, 27910, 27911]

Results (APA 3, batch 2, PDE 40%)

APA 3 - Runs [28154, 28155, 28156, 28157, 28158]

111-1

130

111-36

130

111-41

111-16

-80 ----

-80

130

111-26

130 111-40

130 111-27

-80

APA 3 - Runs [28154, 28155, 28156, 28157, 28158]

Results (APA 3, batch 2, PDE 45%)

APA 3 - Runs [28165, 28166, 28167, 28168, 28169]

APA 3 - Runs [28165, 28166, 28167, 28168, 28169]

Results (APA 3, batch 2, PDE 50%)

APA 3 - Runs [28176, 28179, 28180, 28181]

160

APA 3 - Runs [28176, 28179, 28180, 28181]

Results (APA 3, batch 3, PDE 40%)

APA 3 - Runs [28361, 28364, 28365, 28366]

APA 3 - Runs [28361, 28364, 28365, 28366]

Results (APA 3, batch 3, PDE 45%)

APA 3 - Runs [28368, 28369, 28370, 28371, 28372]

APA 3 - Runs [28368, 28369, 28370, 28371, 28372]

Results (APA 3, batch 3, PDE 50%)

APA 3 - Runs [28376, 28377, 28373, 28374]

APA 3 - Runs [28376, 28377, 28373, 28374]

Results (APA 4, batch 1, PDE 40%)

APA 4 - Runs [27917, 27918, 27919]

APA 4 - Runs [27917, 27918, 27919]

Results (APA 4, batch 1, PDE 45%)

APA 4 - Runs [27913, 27914, 27915]

APA 4 - Runs [27913, 27914, 27915]

Results (APA 4, batch 1, PDE 50%)

APA 4 - Runs [27909, 27910, 27911]

Results (APA 4, batch 2, PDE 40%)

APA 4 - Runs [28154, 28155, 28156]

112-0

112-6

130

112-10

130 112-16

130

112-27

130 140

130 112-31

130 112-47

130 140 150 160

-80

-80

130 140

140

-80

130

112-7

1333 Wf(s)[0,1,...]

140 150 160 1352 Wf(s)[0,1,...

140 150 160 1349 Wf(s)[0,1,...

140 150 160 1338 Wf(s)[0,1,...

140 150 160 1356 Wf(s)[0,1,...

140 150 160 1354 Wf(s)[0,1,...

140 150 160 APA 4 - Runs [28154, 28155, 28156]

Results (APA 4, batch 2, PDE 45%)

APA 4 - Runs [28165, 28166, 28167]

112-0

112-6

113-0

130 112-27

130 112-21

130

130 112-47

130 140

150 160

160

APA 4 - Runs [28165, 28166, 28167]

Results (APA 4, batch 2, PDE 50%)

APA 4 - Runs [28176, 28179]

160

APA 4 - Runs [28176, 28179]

Results (APA 4, batch 3, PDE 40%)

APA 4 - Runs [28361, 28364]

APA 4 - Runs [28361, 28364]

160

160

Results (APA 4, batch 3, PDE 45%)

APA 4 - Runs [28368, 28369, 28370]

The last

160

150

150

APA 4 - Runs [28368, 28369, 28370]

Results (APA 4, batch 3, PDE 50%)

APA 4 - Runs [28373, 28374]

APA 4 - Runs [28373, 28374]

