Report from SAND Calibration WG

P.Gauzzi (Universita' La Sapienza e INFN – Roma) for the SAND Calibration WG

> SAND General Meeting November 12, 2024

DIPARTIMENTO DI FISICA

SAND Calibration WG

- Calibration: from detector signals to physical variables
 - ECAL: energy, time and positions of the particles
 - GRAIN: tracks, time, energy,
 - Tracker : r-t relations, track momentum, dE/dx for PID,
 - Timing alignment among the subdetectors
- Define a strategy for each subdetector:
 - Sources: cosmics, particles from beam, ...
 - Choose suitable processes (given the expected fluxes of particles in the detector, e.g. for the ECAL: cosmic µ's as MIPs, MIPs from the beam, electrons and photons)
 - Set a calibration procedure (Which level of precision ? How much time expected ?)
 - Reference people: ECAL P.Gauzzi, GRAIN: A.Surdo, Tracker:
- WG meetings generally every three weeks, on Thursday at 3 p.m. CET (8 a.m. CT)
- WG mailing list: <u>dune-nd-sand-calibration@fnal.gov</u>

2

Studies on ECAL Calibration

R.D'Amico – P.Gauzzi

DIPARTIMENTO DI FISICA

3 P.Gauzzi SAND GM 12/11/2024

ECAL calibration in KLOE

- Calibration constants C_i determined with cosmic rays, Data-taking without circulating beams: muons = MIPs
- 2.5 kHz of cosmics \Rightarrow "golden" MIPs, ~ 100 Hz

1 day data-taking $\Rightarrow \sim 10^3$ evts/cell C_i = peak of the MIP distribution $\Rightarrow \sim 1 - 2$ % accuracy Repeated every few months

- Average energy scale 38 MeV / MIP crossing a cell at the center (measured at test beams)
- Absolute energy scale set with Bhabha scattering events (e⁺e⁻→e⁺e⁻) and e⁺e⁻→ γγ: showers of 510 MeV
- Repeated every run (every 1 or 2 hours)
- $4 5 \times 10^4$ Bhabha evts in the Barrel $O(10^5)$ in the Endcaps $10^3 10^4$ yy events in one run

SAPIENZA

ECAL calibration in SAND

MIPs from cosmic rays: muon flux at surface ~ 0.02 μ /(s cm²)

 \Rightarrow ~ 10⁴ µ/s on ECAL (\Rightarrow 100 Hz of "golden mips" in KLOE)

- Underground reduction of a factor of about 100 \Rightarrow ~ 100 µ/s on ECAL (no selection)
- Rough estimate by rescaling the KLOE numbers \Rightarrow 1 day (24 hrs): ~ 10 evts/cell
- Relaxing the "golden mip" selection: in few days ~ 10³ evts/cell

MIPs from beam (rock, magnet and Fe yoke, upstream ECAL modules)

- We need also muons from beam for the modules around the median plane and for the endcaps
- Started MC study of the rate of muons from beam events reaching the ECAL

SAPIENZA

• Generation of 100000 v_{μ} events with vertices in the hall and in the rock surrounding the hall

• Selecting events with at least a muon in the ECAL \Rightarrow ~ 2000 evts.

- All events
- Events with at least one muon in the ECAL
- We can restrict the generation window to DUNE_ND_HALL
 (X and Y in ~ -6.0 6.0 m) and to cut at Z > -10 m

Istituto Nazionale di Fisica Nucl

- Generation of 25000 v_{μ} in that window \Rightarrow 797 events with at least 1 cluster from μ
- This small sample corresponds to ~ 2 × 10¹⁵ POTs, ~ 30 spills (FHC mode, 1.2 MW)

Sapienza

- ~ 800 evts in 30 spills means ~ 26 muons/spill
- 2 × 10⁶ good muons in 24 hours of beam

Events / (3.33333) 80 70 60

50

40

30 -

20

10

- Golden mips: all the cluster cells in the same column
- Low statistics
- Clean distribution
- Good peak fit

- Less stringent selection: at least 3 cells in the same column
- Peak still clear

MPV = 34.899 ± 0.489 $\sigma_{\rm L}$ = 2.032 ± 0.341 $\sigma_{0} = 4.871 \pm 0.579$

CB σ = 2.364 ± 0.673 CB α = -3.118 ± 1.987

CB n = 4.683 \pm 7.111 Entries = 378

Signal: 367 events Background: 10 events Landau ⊗ Gaussian

Data ٠

----- Exponential Total Fit

70

50 60

30 40

Istituto Nazionale di Fisica Nucle

UNIVERSITÀ DI ROMA

- Occupancy:
 - No conditions on muon clusters

- At least 3 cells in one column

- Golden mips

JNIVERSITÀ DI ROMA

Istituto Nazionale di Fisica Nuclea

Energy scale calibration in SAND

- γ 's from π^0 decays, invariant mass reconstruction (need a vertex from the tracker)
- γ + electrons: ~ 30% of photons from π^0 convert in the tracker

 \Rightarrow ~ 50% of π^0 have at least one $\gamma \rightarrow e^+e^-$ (from DUNE-doc-13262 A Near Detector for DUNE)

- High energy electrons from v_e interactions \Rightarrow need the momentum measurement in the tracker
- Possibility to exploit $K^0 \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$
- From a naive rescaling of K⁰→π⁺π⁻ ⇒ O(10⁵) evts in 5 years of FHC data-taking
- Reconstruct a vertex with the ECAL only, back-propagating each of the 4 photons, but the times of the ECAL cells must be very well aligned

11

Time calibration

MIPs: uniform illumination of th for calibration of time and coor along the fibers

$$t = \frac{1}{2}(t_A + t_B) - \frac{L}{2v} - t_0$$

$$\begin{array}{c} A & \underbrace{x} & B \\ \hline \\ redinate & L & \\ t_{G}^{0} & x = \frac{1}{2}v(t_{A} - t_{B}) - \Delta t_{0} & \\ \Delta t_{0} = \frac{1}{2}(t_{A}^{0} + t_{B}^{0}) \\ \Delta t_{0} = \frac{1}{2}(t_{A}^{0} - t_{B}^{0}) \end{array}$$

Signal: 15790 events $t_{\rm c}(ns) = 0.218 \pm 0.050$ Events / (2) m/ns) = 17.847 ± 0.058 width (ns) = 24.094 ± 0.071 $\sigma = 1.857 \pm 0.105$ Erf Function 800 600 400 200 Δt_{0} 40 50 t₁ - t₂ [ns] -10 20 -20 0 10

Fit function: sum of two Error functions Width \Rightarrow 2L/v , L =430 cm fixed, v free parameter \approx 17 cm/ns

• t_0 's from fit of straight tracks (p > 6 GeV): cosmic muons and beam muons

R

GRAIN calibration with muons

A.Surdo

The case of GRAIN

Event features to be reconstructed from detector signals: interaction vertex, tracks, time,

energy deposit (transferred directly to the LAr and/or carried out by the outgoing tracks)

Detector: SiPM matrices collecting the scintillation light photons in the whole

sensitive LAr volume through lenses and/or coded masks Coded masks Lenses

Energy deposit evaluation

- ✓ In principle, two possible approaches (probably complementary and interleaved):
- a) Calorimetric measurement of total released energy Extract the whole energy released in GRAIN from the total number of collected photons by all SiPM matrices
- a) Track-by-track energy loss evaluation For each reconstructed track, evaluate the associated amount of collected photons
- ✓ In both cases, several factors must be taken into accounts:
 - relation between energy deposit and scintillation light emission
 - positions of interaction vertex and track propagation through the volume (absorption of photons, geometrical acceptance, ..)

APIENZA

- SiPM photon detection efficiency

Use of muons for calibration

Most obvious process to be considered:

MIPs crossing the LAr volume

- muons from the beam interaction outside GRAIN
- cosmic ray muons

Muon from $\boldsymbol{\nu}$ interaction in the yoke and crossing GRAIN

Specific energy loss for a generic material: $dE/dx > ~2 MeV/(g \cdot cm^{-2})$

Can be estimated from MC simulation or measured from experimental data. For LAr:

dE/dL ~ 2.5 MeV/cm \Rightarrow N₀ ~ 10⁵ ph /cm Photon emission per unitary pathlength (assuming f ~ 4 · 10⁴ ph/MeV)

The relation between muon Pathlength and Energy loss exploited to get knowledge of energy deposit in LAr, to be related to the amount of detected photons

A possible plan

Possible method to be implemented:

- Reconstruct the tracks in the event ("SandReco")
- Select the events with a clean muon track generated outside and crossing GRAIN
- Estimate the track Pathlength (ΔL) and the corresponding Energy Loss (ΔE_{loss}) in LAr
- Correlate the total **collected photons** to the **deposited energy** in LAr, in order to calibrate photo-sensor response

To test this procedure:

- MC samples of ν_{μ} CC interactions both in ECAL and magnet Yoke were generated
- The events with a muon crossing GRAIN are then selected, and ΔL and ΔE_{loss} are evaluated from *EdepSim* information related to the muon trajectory
- The subsample of events is considered in which the muon crosses GRAIN not accompanied by other particles
- By using the photo-sensor setup (including layout, efficiencies and electronics), the number of photons collected by all SiPM matrices is finally correlated to ΔE_{loss}

Events with the muon entering GRAIN

Energy deposit evaluation

Selection of events with the muon entering the GRAIN volume:

Precise determination of <dE/dx> by the muons crossing GRAIN

Relation btw ΔL and ΔE

DIPARTIMENTO DI FISIC/

Muon Pathlength in GRAIN and Collected photons

Correlation btw detected photons and deposited energy

- Not a so narrow correlation
- Possible effects from track position vs geometrical acceptance

Apparently, different behaviours ?

Expected muon flux from the beam and CRs

Different contributions of the target masses in SAND for beam neutrinos

(from DUNE-doc-13262, A Near Detector for DUNE)

Table 1.29: Total number of $(\nu_{\mu} + \bar{\nu}_{\mu} + \nu_{e} + \bar{\nu}_{e})$ CC+NC events expected within a single beam (9.6 μ s, 7.5 × 10¹³ POT) in the various detector components for both the FHC and RHC beam model.

Detector element	Mass	FHC	RHC	
Magnet	511 t	68.9	36.6	
ECAL	100 t	13.5	7.2	
LAr+STT	8.2 t	1.1	0.59	
STT fiducial volume	5.5 t	0.74	0.39	
Total	619.2	83.5	44.39	

 From the interaction rate /spill in Magnet yoke and ECAL, a quite low number of clean muons are expected to cross GRAIN per spill (≤ 1 µ / spill) Table 1.34: Number of events per spill (9.6 μs , 7.5 \times 10¹³ POT) and selection efficiency for the signal from ν_{μ} CC in the front barrel ECAL and the backgrounds from rock muons and magnet events.

	ECAL		Rock muons		Magnet events	
Cut	Events	ε (%)	Events	ε (%)	Events	ε (%)
No cut	2.23	100.0	1447.26	100.000	50.82	100.000
μ in ECAL FV	2.23	100.0	12.73	0.880	18.92	37.229
STT & ECAL hits	1.63	72.9	6.05	0.420	3.443	6.775
NN cut	1.56	95.5	0.10	0.007	0.07	0.136

• Further contribution from rock μ 's (~ 1.7/spill) ...

Contribution from Cosmic Rays ...

CR Muon flux at surface ~ 0.01 $\mu/(s \text{ cm}^2)$ + underground reduction of ~ 100 Effective area of GRAIN for <60° CR muons: ~3×10⁴ cm² \Rightarrow ~3 μ/s are expected to cross GRAIN

Drawback: smaller acceptance by the tracker for

a precise track reconstruction

Main contribution only if inter-spill DAQ were ON

Conclusions

- ECAL: Evaluating the rate of good muons from beam events Next steps:
 - Produce few x 10^6 events to increase the statistics
 - Define a strategy to calibrate the Endcaps and the modules with low statistics
 - Start the study of the energy scale calibration
- GRAIN: Two approaches considered: the calorimetric measurement of total energy and the Track-by-track energy loss evaluation
 - A possible procedure for energy calibration proposed and preliminarly tested, based on the Monte Carlo simulation of v_{μ} interactions in ECAL and Yoke, and the Lens-camera system response (including geometrical layout, PDE, electronics, ..)
 - Study in progress, results too preliminary to get conclusions on the method validity Next step: use of muon beams from MC crossing GRAIN with fixed pathlength and direction
- Strategy of time alignment with the other subdetectors has to be studied

IPARTIMENTO DI FISICI

DIPARTIMENTO DI FISICA

23 P.Gauzzi SAND GM 12/11/2024

ECAL calibration

MIPs from beam (rock, magnet and Fe yoke, upstream ECAL modules)

• ~ $1.5 \times 10^3 \mu$ /spill (1 spill = 9.6 µs every 1.2 s) without any selection

	ECAL		Rock muons		Magnet events	
Cut	Events	ε (%)	Events	ε (%)	Events	ε (%)
No cut	2.23	100.0	1447.26	100.000	50.82	100.000
μ in ECAL FV	2.23	100.0	12.73	0.880	18.92	37.229
STT & ECAL hits	1.63	72.9	6.05	0.420	3.443	6.775
NN cut	1.56	95.5	0.10	0.007	0.07	0.136

Table 40: Number of events per spill (9.6 μs , 7.5 × 10¹³ pot) and selection efficiency for the signal from ν_{μ} CC in the front barrel ECAL and the backgrounds from rock muons and magnet events.

(from DUNE-doc-13262, A Near Detector for DUNE)

• By requiring hits in the STT and ECAL \Rightarrow ~ 11 muons/spill

